
PFCNN: Convolutional Neural Networks on 3D Surfaces Using Parallel Frames

Yuqi Yang∗1,3 Shilin Liu∗2,3 Hao Pan†3 Yang Liu3 Xin Tong3

1Tsinghua University 2University of Science and Technology of China 3Microsoft Research Asia
yangyq18@mails.tsinghua.edu.cn freelin@mail.ustc.edu.cn

{haopan,yangliu,xtong}@microsoft.com

Abstract

Surface meshes are widely used shape representations
and capture finer geometry data than point clouds or volu-
metric grids, but are challenging to apply CNNs directly due
to their non-Euclidean structure. We use parallel frames
on surface to define PFCNNs that enable effective feature
learning on surface meshes by mimicking standard convolu-
tions faithfully. In particular, the convolution of PFCNN not
only maps local surface patches onto flat tangent planes, but
also aligns the tangent planes such that they locally form
a flat Euclidean structure, thus enabling recovery of stan-
dard convolutions. The alignment is achieved by the tool of
locally flat connections borrowed from discrete differential
geometry, which can be efficiently encoded and computed
by parallel frame fields. In addition, the lack of canonical
axis on surface is handled by sampling with the frame di-
rections. Experiments show that for tasks including classi-
fication, segmentation and registration on deformable geo-
metric domains, as well as semantic scene segmentation on
rigid domains, PFCNNs achieve robust and superior per-
formances without using sophisticated input features than
state-of-the-art surface based CNNs.

1. Introduction
Applying CNNs to 3D geometric domains is critical for

deep learning beyond the 2D images. Unlike regular 2D
images, 3D geometric data can be represented in different
forms, posing challenges to standard CNNs. For example,
volumetric grids regularly sample R3 on which CNNs can
be trivially deployed, but they are memory consuming and
inflexible for capturing fine geometric details. For repre-
sentation efficiency, 3D objects and scenes are frequently
encoded by their boundary surfaces discretized as trian-
gle meshes. However, the curved and irregularly sampled
meshes do not admit the standard CNNs designed for flat
image domains with regular pixel grids. While several sur-
face based CNNs have been proposed to tackle this prob-
lem, in this paper we use parallel frame fields that con-
∗Joint first author. Work done during internship at Microsoft.
†Corresponding author.

tain pointwise N -direction frames (Fig. 1) to define a novel
PFCNN framework whose convolution mimics standard im-
age convolutions more faithfully.

Similar to standard CNNs, the PFCNN convolution
works on a local surface patch each time and maps it onto
the flat tangent space where the convolution kernel is pa-
rameterized, as done by many previous surface based CNNs
[28, 3, 30, 32]. Different from the previous approaches,
however, we also align the tangent spaces of different sur-
face points such that they locally form a flat Euclidean struc-
ture, on which the surface-based feature maps and convolu-
tion kernels can be moved as in the standard image domain.
For images, such translation operations are formally cap-
tured by the translation equivariance property of convolu-
tion [4], which is a key factor contributing to the effective-
ness of CNNs by enabling shared trainable weights and thus
significantly reducing the amount of network parameters to
avoid overfitting and achieve generalization [23, 13]; our
surface based convolution is shown to reproduce the image-
domain translation equivariance locally.

We adopt the tool of locally flat connections from dis-
crete differential geometry [45] to align the tangent spaces.
The locally flat connection is encoded by the field of point-
wise tangential N -direction frames (Fig. 1) that is effi-
ciently computed to be parallel and aligned to salient geo-
metric features to better capture semantics. In addition, be-
cause there exists no canonical axis on a surface, we sample
the axes using the sameN frame directions and organize the
resulting feature maps with anN -cover space of the domain
surface [9]; on each sheet of the cover space, the canoni-
cal axis is selected and the convolution is readily defined.
Furthermore, to handle the irregular mesh vertices, for each
patch we resample with a regular grid and apply standard
shaped convolution kernels on it.

The PFCNNs resemble standard CNNs so that efficient
network structures can be leveraged accordingly. Through
experiments of deformable shape classification, segmenta-
tion and matching as well as rigid scene segmentation, we
show that PFCNNs using only raw input signals achieve su-
perior performances than competing surface CNN frame-
works. In addition, we do extensive ablation studies to val-
idate the components of our framework.

1

2. Related work
We briefly review 3D neural networks by classifying

them according to the forms of domain representation, and
focus on the most related works that use surface meshes.

3D neural networks for volumetric grids, point clouds
and multi-view representations. The earliest works for
3D deep learning directly extend CNNs to 3D volumet-
ric grids [47, 29], which are later improved for computa-
tional efficiency by using adaptive grids like octrees that use
high resolution only around the boundary surfaces [37, 46].
Point sets also conveniently encode 3D shapes, for which
the set-based PointNet [33] is proposed and later extended
by PointNet++ [35] to take advantage of the local surface
patch structure. Similarly, more works utilize the local
patch structures of 3D point clouds, by e.g. tangent plane
projection [42], localization with lattice structure [40], or
localized kernel functions [1, 43]. Multi-view representa-
tions encode 3D data with a set of 2D images [41, 34], on
which standard CNNs are applied to extract intermediate
features and aggregated for final output. The PFCNNs pre-
sented in this paper work on surface meshes, which have
been used pervasively for 3D representation due to their
high efficiency for capturing geometry to the fine details.

Patch-based surface CNNs. A series of works extend
standard CNNs to curved surface domains by applying con-
volution operations on localized geodesic patches; they dif-
fer mainly in the specific ways of convolution computa-
tion. Masci et al. [28] parameterize each geodesic patch
in polar coordinates, upon which the convolution opera-
tion is computed by rotating the kernel function for a set
of discrete angles and convolving it with input features; the
convolved features for different angles are further pooled
for output. With such an approach, it is hard to capture
anisotropic or directional signals. Later Boscaini et al. [3]
propose anisotropic CNNs that extend [28] by aligning the
convolution kernels to frames of principal curvature direc-
tions, thus removing angular pooling and ambiguity, and
show improved performances on various tasks. Xu et al.
[48] use a similar convolution on n-ring neighboring faces
with fixed cardinality for shape segmentation. MoNet [30]
extends the geodesic convolutions by modeling the convo-
lution kernel as a mixture of Gaussians whose bases and
coefficients are fully trainable rather than functions of fixed
parameterizations. TextureNet [16] imposes locally rectan-
gular grids define by 4-directional fields on the geodesic
patches, and extract the features for center or corner grid
points separately to handle the grid orientation ambiguity.
Multi-directional CNNs [32] make the further step of re-
solving the orientation alignment of geodesic patches by
using parallel transport to match the directional convolution
responses for different surface points, which enables effec-
tive propagation of directional signals. Different from these

TxM

TzM

TyM

(a) (b)
Figure 1. For patch-based surface CNNs, the key problem is how
to align the tangent spaces of different surface points. (a) the par-
allel transport is path-dependent and maps the vector in TxM
directly to the blue one in TzM but to the red dashed one by
going through TyM. (b) by building a flat connection encoded
by the parallel 4-direction frame field, our approach has path-
independent translation as in image domain.

manifold based works, SplineCNN [11] defines 3D spline
convolution kernels for extracting features on surface and is
inherently a volumetric approach focusing on handling the
irregular sampling of meshes.

Our PFCNN follows the geodesic convolution paradigm,
but differs from others in the convolution computation. In-
deed, our framework closely relates to the latest parallel
transport approach of [32], but we align the tangent spaces
with locally flat connections that not only approximate the
parallel transport but also induce a locally Euclidean struc-
ture suitable for defining convolutions as for images. In ad-
dition, the locally flat connections can be adapted to capture
salient geometric features like sharp creases, which further
improves performance. As a result, our PFCNNs show su-
perior performances than the previous patch-based surface
CNNs on diverse tasks (Sec. 6).

Surface CNNs using atlas maps. Another series of
works deal with a surface domain by mapping it to a 2D
atlas image, on which standard convolutions are applied.
Sinha et al. [39] use the geometry image to map a 3D sur-
face of sphere topology to the planar domain and feed the
map to CNNs for shape recognition. Maron et al. [27] note
the geometry images have gaps between charts of the atlas
map and propose to parameterize a surface of sphere topol-
ogy conformally to the flat image with a toric topology,
where standard convolutions with cross boundary cyclic
padding are applied. Such convolutions are shown to be
conformally translation equivariant but the conformal scal-
ing distortion is uneven for different surface regions. Li et
al. [25] handle the gaps of an atlas map by modulating the
convolution to jump across the gaps, while the mapping dis-
tortion is loosely constrained by subdividing the charts. In
comparison, our framework works with surfaces of general
topology and automatically preserves the original signals
with minimal distortion due to the local patch paradigm.

3. Overview
To represent the boundary of a 3D object, we consider

a surface mesh M = (V, F), with V = {vi} the vertices
with embedding vi ∈ R3, and F = {fi = (vi0, vi1, vi2)}
the faces with corners indexing the vertices. Denote the unit

normal vector at vertex vi as nvi ∈ R3, and tangent plane
as TviM on which we can project the local geodesic patch
and apply standard image-like convolutions. As reviewed
in Sec. 2, while most patch-based surface CNNs follow this
general approach, the key challenge is how to coordinate the
convolutions for tangent planes of different vertices (Fig. 1).
We resolve this challenge by building locally flat connec-
tions that align the tangent planes into locally flat Euclidean
domains, thus enabling effective weight sharing and trans-
lation equivariance that mimic behavior on 2D images.

In Sec. 4 we briefly review the standard Euclidean convo-
lutions with their translation equivariance property, the no-
tion of connections from differential geometry, locally flat
connections encoded by N -direction frame fields and N -
cover spaces for organizing convolution and feature maps.
In Sec. 5 we present the extended convolution on surfaces
using parallel frames that achieves local translation equiv-
ariance and handles irregular vertex sampling on meshes,
and the new layers that constitute a PFCNN model.

4. Background
4.1. Convolution on Euclidean domains

The convolution operation of a CNN exploits the trans-
lation equivariance of 2D images [22, 23, 4]. Let f, k :
Ω ⊂ R2 → R be two functions defined on the image Ω,
and k is the convolution kernel usually with a local spatial
support. Define the convolution operator ? as f ? k(x) =∫
y∈Ω

k(y − x)f(y)dy. A planar translation of the image-
based function by a vector v ∈ R2 is τv(f(x)) = f(x− v).
Translation equivariance simply means that the planar trans-
lation commutes with convolution, i.e.

τv(f ? k) = τv(f) ? k. (1)

CNNs parameterize the convolution kernel with trainable
weights, which can be shared for different image regions
and therefore lead to less overfitting and more general-
ity. As will be discussed next, on curved surface domains
the notion of translation is only locally meaningful, which
poses difficulty for effective weight sharing of the convolu-
tion kernels.

4.2. Connections and locally flat connections

Connections generalize the notion of translation onto
curved manifolds with non-Euclidean metric [24]. Intu-
itively, a (linear) connection ∇ : TM × TM → TM
measures the linear differentiation of moving tangent plane
TxM along a vector v ∈ TxM infinitesimally. Therefore,
a geodesic curve γ : [0, 1] → M as the “straight line”
on a surface has ∇γ̇ γ̇ = 0, i.e. the curve tangent vec-
tor moves straightly along itself. Indeed, the patch-based
multi-directional geodesic CNN(MDGCNN) [32] connects
the convolutions for two surface patches by translating the

tangent planes along the geodesic curve connecting the two
patch centers, which provides a natural extension of trans-
lation on 2D images.

However, the problem with parallel transporting along
the geodesic curves is that the mapping is path dependent.
Consider three nearby points x, y, z ∈ M, and denote the
transport of tangent planes along the geodesic curve be-
tween x, y as τx,y : TxM → TyM. In general, we have
τy,z ◦ τx,y 6= τx,z , where ◦ is composition, with the differ-
ence caused by the curvature of the triangular surface patch
bounded by the geodesic curves (Fig. 1(a)).

In this paper, we propose to use a construction called lo-
cally flat (or trivial) connections [6, 36] to achieve the path-
independent tangent space mapping for all surface patches
except at a few singular points. The idea of locally flat con-
nections is to concentrate the surface curvature onto a sparse
set of singular points and leave the rest majority of surface
area with tangent space mappings as in a Euclidean domain,
which in turn paves the way for convolutions as on images.

4.3. N-direction frame fields and cover space

One way of encoding the locally flat connections for
meshes is through N -direction frame fields [36, 45]. An
N -direction field at x ∈ M gives a frame of N rotation-
ally symmetric directions uix ∈ TxM, i = 1, · · · , N ; thus
two consecutive vectors in the sequence differ by an angle
2π
N . A transport (or matching) τx,y between two tangent
planes of x, y can thus be defined by identifying uix with
ujy , which simply amounts to a change of bases. In partic-
ular, we use the principal matching which chooses j such
that ‖τ ′x,y(uix) − ujy‖ is minimal, where τ ′x,y is the parallel
transport between x, y along geodesics.

In addition, a vertex x is singular if and only if it has
a loop of neighboring vertices [p1, · · · , pn] such that uip1
mapped by τpn,p1◦τpn−1,pn◦· · ·◦τp1,p2 does not return to it-
self (Fig. 2(c)). Therefore on a patch containing no singular
vertex, the transport τx,y remains the same regardless of the
path taken between x, y [6] (Fig. 1(b)). On the other hand,
the concentrated curvature at a singular vertex can only be
multiples of 2π

N , which explains the usage of N symmetric
directions: larger N allows for more flexible singularities
and flat connections. We discuss the choice of N later.

By solving for smooth (or parallel) frame fields that
deviate minimally from the parallel transport and align
to salient geometric features of the underlying surface
[36, 6, 45] (see Appendix B for details), we obtain locally
flat connections that closely approximate the linear connec-
tion while also having consistency among deformed shapes,
therefore supporting improved feature learning by the ex-
tended surface convolutions.

While now we can translate tangent planes, another chal-
lenge unique to a surface domain rather than 2D images
is the lack of canonical axes for the tangent planes. By

1

1

1
2

2

2 3

3

3
4

4

4

1

2
3

4

1

2

3

4
1

2

3

4

(a) (b) (c) (d)
Figure 2. 4-direction frame fields and the corresponding cover
spaces. (a)&(b): a field without singular vertex and the four sep-
arate sheets of the cover space. (c)&(d): a field with a singular
vertex on the cube-corner shaped surface and the four sheets of
cover space that are connected and coincide at the singular vertex.

randomly fixing an axis on one tangent plane, we risk sig-
nificantly biasing the feature learning. Instead, a more ro-
bust approach is to sample several directions on the tangent
planes as axes, and properly aggregate the learned features
for the final output. Fortunately, the N -direction frames
provide a uniform sampling of tangent directions, which
motivates introducing their associated N -cover space that
allows to organize the feature learning over multiple axes.

N -cover space. A frame field induces an N -cover space
over the domain surface [18, 9]. Intuitively, the cover space
consists ofN copiesMi, i = 1, · · · , N of the base surface,
with each copyMi having a unit vector field u

σx(i)
x , where

σx(i) indexes the vector of the N -direction frame at x for
the sheetMi; in addition, uσx(i)

x and u
σy(i)
y are connected

by τx,y the principal matching (Fig. 2). The unit vector field
is well-defined everywhere on the cover space, except at sin-
gular vertices where different sheets of the cover space co-
incide. In this paper, we use the vector field as the canonical
axes and compute surface convolution on the cover space;
around singular vertices, our framework degenerates to a
strategy similar to the parallel transport method [32].

5. Surface based PFCNN
5.1. Surface convolution via parallel frames

Given a surface mesh M equipped with a parallel N -
direction frame field uix, the surface convolution for a vertex
vi with its feature vector Fjvi , j = 1, · · · , N on the σ−1

vi (j)-
th cover sheet is computed by the following steps:

1. Choose ujvi as the x-axis of the tangent plane TviM.
Thus the local coordinate system is encoded by the 2×
3 matrix F jvi = (ujvi ,nvi × ujvi)

T .

2. For each vertex vk in the neighboring geodesic patch
Nvi , project it onto the tangent plane as v′k under co-
ordinate system F jvi . Let ulvk = τvi,vk(ujvi); the pro-
jected point has feature vector Flvk . Resample the pro-
jected feature map into a regular grid, denoted FjNvi

.

3. Convolve FjNvi
with regular kernels K defined under

F jvi . The responses constitute the feature vector of vi
for the next network layer.

Before presenting details for step 2, we remark that transla-
tion equivariance in the form of (1) indeed holds locally:

τvi,vk(f ? k) = τvi,vk(f) ? k, (2)

where we assume f is a function defined on the tangent
plane TviM, and k is the convolution kernel supported on
tangent planes. The equality holds because: on the left hand
side, f ? k returns a function on TviM which is then trans-
ported by the flat connection τvi,vk to a function on TvkM,
while on the right hand side f is first transported onto
TvkM and then convolved with k on TvkM; since the trans-
port τvi,vk only changes the underlying coordinate system
bases, the functions f, k when defined using local coordi-
nates do not change at all by the transport, which makes the
equality trivially true. In addition, on a patch without sin-
gular vertices, the transport and equation holds regardless
of the path taken between two vertices, which is different
from the path-dependent parallel transport [32]; for patches
with singular vertices, because the transport minimizes de-
viation from the parallel transport (Sec. 4.3), our convolu-
tion closely resembles the parallel transport approach.

Projection to tangent space and resampling. Previous
patch-based surface CNNs use various kinds of geodesic
curve tracing to impose a polar coordinate system onto the
neighborhood patch Nvi and map each neighboring point
onto the tangent plane [28, 3, 30, 32]. We follow a sim-
ilar approach adapted from [5] that is simpler to compute
and works even for point clouds, thus enabling easy exten-
sion of our framework to point clouds. In particular, we
modulate the geodesic coordinates computation using the
local axes F jvi , and re-triangulate the projected neighboring
points with Delaunay triangulation to avoid flipped trian-
gles, over which a regular grid in the shape of convolution
kernels is then resampled and feature vectors interpolated.
The operation is encoded by a sparse tensor S that is pre-
computed for a surface mesh and can be applied efficiently
with standard NN libraries. See Appendix C for details.

5.2. PFCNN structures

In this section we present the detailed structures of layers
specific to PFCNNs. These layers can be combined with
standard CNN layers and stacked into networks such as U-
Net [38] and ResNet [14].

Input layers. The PFConv takes as input a group of N
feature maps corresponding to the N cover sheets. These
features can be constructed by simply duplicating the orig-
inal input for N copies, i.e. |V |×Cin → |V |×N×Cin,
where Cin is the input per-vertex feature length, or can be
computed by further utilizing the local coordinate systems
for different cover sheets. Indeed, we find that for tasks
on deformable domains, e.g. non-rigid shape classification,
segmentation and registration, a simple but effective input

feature that is invariant to global rigid transformations is
the normal vector and height from tangent plane in local
coordinates, i.e. Flvk=

(
F jvinvk ,n

T
vinvk ,n

T
vi(vk − vi)

)
for

each patch vertex vk ∈ Nvi . In this case, the input layer
constructs an expanded |V |×N×H×W×Cin feature map
directly by sampling the local features with regular grids
(Sec. 5.1), where H×W is the spatial shape of the subse-
quent convolution kernel to be applied.

Output layers. For the final per-vertex output we need
to reduce the grouped feature maps to an aggregation, i.e.
|V |×N×C → |V |×C. The reduction operation can be in
different forms, e.g. taking the maximum or average among
N parallel channels, or being learned implicitly by a stan-
dard 1×1 convolution. The outputs can be further aggre-
gated over all vertices into a single output for the whole
shape, as in classification tasks.

Convolution layers. Given an input feature map Fin of
shape |V |×N×Cin, the convolution layer first vectorizes it
into vec(Fin), multiplies with the sparse matrix S of shape
(|V |×N×H×W, |V |×N) that does the feature map resam-
pling (Sec. 5.1), and reshapes the result vector into a ten-
sor of shape |V |×N×H×W×Cin; it then multiplies with
the convolution kernel of shape H×W×Cin×Cout to ob-
tain the output feature map |V |×N×Cout. In case the input
layer provides an expanded feature map with local features
as discussed above, the convolution is a simple multipli-
cation with the kernel. In addition, the special case of 1×1
convolution on each cover sheet through aCin×Cout kernel
skips the feature resampling step and is directly multiplied
with Fin to obtain the output. Note the same convolution
kernel is shared for all N cover sheets of feature maps, as
the different cover sheets effectively sample the canonical
axes over the surface domain.

Pooling/Unpooling layers. Pooling and unpooling lay-
ers effectively change the spatial resolution of learned fea-
tures. For surface meshes the different domain resolutions
can be built through a hierarchy of simplified meshes Mi

with M1 = M and each coarse vertex v ∈ Vi+1 cor-
responding to a subset of dense vertices {v′k} ⊂ Vi, us-
ing e.g. [12, 15]. We adapt the simplification process so
that their N -direction frames are also mapped, i.e. F jv cor-
responds to F lv′k

the closest axes by rotation. Pooling is

then defined as Fjv = Pool({Flv′k}), where Pool(·) takes
channel-wise maximum or average; the layer has a signa-
ture of |Vi|×N×C → |Vi+1|×N×C in terms of feature
map shapes. Unpooling is the inverse operation of pooling.

Throughout the paper we assume batch size one, al-
though using larger batch size is trivial as long as each mesh
of a batch has the same number of vertices on every do-
main resolution. We have implemented the above layers
with Tensorflow; the code is publicly available1.

1Code and data are available at https://github.com/msraig/pfcnn.

Table 1. Results on SHREC’15 non-rigid shape classification.
PN+ is PointNet++[35]; “raw” means using spatial coordinates as
input, “en” means using an ensemble of intrinsic shape descrip-
tors. MDG is MDGCNN[32] using SHOT features as input.

PN+(raw) PN+(en) MDG Ours
Accu.(%) 60.18 96.09 99.5 99.5

Table 2. Results on human body segmentation. Our method out-
performs MDGCNN on both original data and the remeshed data.

Original Remeshed
Method MDGCNN Ours MDGCNN Ours

Accu.(%) 88.2 91.45 89.53 91.79

6. Experiments
We test the PFCNN framework and compare it mainly

with the state-of-the-art MDGCNN [32] on deformable do-
main tasks involving shape classification, segmentation and
registration where MDGCNN achieves uniformly superior
performances than other methods, and with the state-of-the-
art TextureNet [16] on the scene semantic segmentation task
which has a rigid underlying domain. We further do ab-
lation study on the impact of parallel frames, cover space
grouped feature maps and layer normalization, etc.

6.1. Deformable domain tasks

For fair comparison, we use 5×5 convolution kernel
for PFCNN and a larger 4(radial)×8(angular) kernel for
MDGCNN, and the same network structure for both meth-
ods in each task, except for registration where the same
number of convolution layers are adopted. Network and
training details are provided in Appendix D.

Classification. The SHREC’15 non-rigid shape classifi-
cation challenge [26] has 1200 shapes represented by sur-
face meshes that belong to 50 categories. We use a network
with three levels of resolution and the localized normal vec-
tors as input features (Sec. 5.2) for PFCNN. As shown in Ta-
ble. 1, our results outperform PointNet++ [35] even when it
uses an ensemble of sophisticated input features, e.g. WKS
and HKS, that are agnostic to non-rigid deformations. We
are on par with MDGCNN that uses as input the SHOT de-
scriptor [44] which is rotation invariant and more sophisti-
cated than our raw input.

Human body segmentation. The human body segmen-
tation dataset proposed by [27] contains labeled meshes of
diverse human identities and poses from various sources,
split by 381/18 for training and testing. The meshes have
very different scales which we normalize first. The mesh
resolutions are also very different, with the number of ver-
tices varying from 3k to 12k, yet our network works well on
the these data without remeshing. The network is a U-Net
like structure with three levels of domain resolutions.

To compare with MDGCNN, we test on both the orig-
inal meshes and the resampled meshes generated with its
open sourced code. Testing results are reported in Table 2

(i)

(ii)

(iii)

Figure 3. Results of human body segmentation. (i) the ground-
truth labeling; (ii) the results of MDGCNN; (iii) our results.

and visualized in Fig. 3. Note that the ground truth label-
ing for different samples are not always consistent, which
hinders the possibility of achieving very high accuracy. For
example, in Fig. 3 the third column GT mistakenly labels
the shank to thigh. But our method correctly segments this
part and has better coverage than MDGCNN. Still for some
shapes which are dissimilar to the training data, e.g. the first
column in Fig. 3 which has exceptional hair, both methods
fail to segment the hair properly, although our method cap-
tures the face better.

Human body registration by vertex classification. We
test with the non-rigid human body registration task pro-
posed by the FAUST dataset [2]. In one scenario, the regis-
tration is achieved by classifying each input mesh vertex of
a body shape into its corresponding vertex on the template
mesh, as done in previous works [28, 3, 11]. We use a sim-
ple network consisting of a sequence of convolutions in the
same level-of-detail for PFCNN, and a two-level network
for MDGCNN, following their original setting.

The meshes in the FAUST dataset have the same topol-
ogy with the template, which may be exploited unfairly to
learn correspondences. Following MDGCNN, we remesh
them to 5k vertices and different topologies. Using the near-
est vertex as the correspondence between original meshes
and the remeshed ones, we can get the ground truth vertex
correspondence to the remeshed template, to supervise the
registration task by classifying each vertex to 5k classes.

We achieved 92.01% accuracy on the remeshed data, as
compared to 94.5% accuracy on the original meshes. To
fully compare with MDGCNN, we also test variations of
their networks with more radial bins and angular directions
and different normalizations (more discussions in Sec. 6.3).
The accuracies within bounded geodesic errors are plotted
in Fig. 4; our results have even better zero-error accuracy
than their best with 4×16 kernels and instance normaliza-
tion. The visual results are shown in Fig. 5; we can see that
our results have a smoother mapping to the template shape.

0.0 0.1 0.2 0.3 0.4 0.5
Geodesic Error

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Ac
cu

ra
cy

Ours_IN
Ours_BN
MDGCNN_4bin8dir_BN
MDGCNN_4bin8dir_IN
MDGCNN_4bin16dir_IN

Figure 4. Accuracy within given geodesic error for the non-rigid
registration by vertex classification.

(i)

(ii)

(iii)

Figure 5. Visual comparison of our method and MDGCNN on
non-rigid registration. (i) the ground truth mapping; (ii) the best
results of MDGCNN with 4 bins, 16 directions; (iii) our result.

In Appendix E, we test with a more challenging scenario
of non-rigid registration by regression on noisy real scans
with diverse and high genus meshes, where our results are
again considerably better and more robust than MDGCNN.

To summarize, compared with the parallel transport
based convolution by MDGCNN, using parallel frames that
induce locally path-independent transport and the alignment
to salient geometric features enables more efficient feature
learning for our convolution; the difference is more obvious
for finer scale tasks like segmentation and registration.

6.2. Semantic scene segmentation

In this section, we evaluate on a widely used indoor
scene semantic segmentation task provided by the ScanNet
dataset [7]. While indoor scenes generally have rigid ge-
ometry dominated by flat walls and floors, PFCNN is still
shown to achieve good performances, improving over the
state-of-the-art TangentConv [42] and TextureNet [16] that
use tangential and local patch convolutions.

We use a network with U-Net structure and three levels
of domain resolutions. We follow [16] to prepare the train-
ing data by cropping small chunks from a whole scene and

Table 3. Results on ScanNet segmentation task. mIoU is the class
mean intersection over union. mA is the class mean accuracy. oA
is the overall accuracy, which is significantly biased toward floors
and walls that are dominant in scenes. Ours* uses a network with
more convolution layers.

[42] [16] Ours Ours*
mIoU 0.49 0.58 0.632 0.662

mA(%) 61.4 74.4 75.7 77.92
oA(%) 77.9 80.38 85.01 86.26

(i) (ii) (iii)
Figure 6. Example indoor scenes of ScanNet segmented by com-
paring methods. (i) is the ground truth segmentation; (ii) is the
results of [16]; (iii) shows our results. Our results have more reg-
ular boundaries separating regions of larger consistency.

training on these chunks which are randomly rotated around
the upright direction for augmentation. For network input,
we follow [42] to include the height above ground, normal
vector, color and distance from the local tangent plane for
each mesh vertex of a surface patch, rather than the local-
ized normal vector as discussed in Sec. 5.2, while [16] uses
additional high resolution texture images as input. For fair
comparison, we have used a network with similar amount
of trainable parameters to [16]; we also explore the effect of
increasing the network size and report a better performance.

The result statistics of comparing methods and ours on
validation sets are shown in Table 3; our results have much
better mean IoU and mean accuracy than theirs, which
shows our network can better distinguish smaller objects
than just the dominant segments like floors and walls. Fig. 6
show some visual results. The black regions in (i) are unla-
beled data; our method predicts reasonable labels for these
regions. The boundaries separating different objects in our
results are cleaner than [16], like the boundary between
windows and the wall in the first row and the door and wall
in the third row; our segments are also more regular and
consistent. See Appendix E for more detailed data and vi-
sual results on both validation and test sets.

Considering that all three methods use tangent space
convolutions, the results demonstrate that our locally trans-
lation equivariant convolution as the key difference is more
effective in learning features.

Table 4. Testing accuracy of different convolution methods on the
non-rigid registration task by vertex classification. PCF means us-
ing the principle curvature directions as tangent plane axes. PCF
as FF means using the principal directions as the 4-direction frame
field for our PFCNN framework.

PCF PCF as FF Ours
Accu.(%) 83.29 89.80 92.01

Table 5. Accuracy and runtime cost of different frame field sym-
metry orders N , on the non-rigid registration task by vertex clas-
sification. The costs are measured on an RTX2080 GPU.

N 1 2 4 6 8
Accuracy(%) 83.11 91.81 92.01 92.45 93.35

Time(ms) 56.81 87.57 139.10 183.91 227.72
Memory(MB) 148.67 156.15 205.81 371.45 409.18

6.3. Ablation study

In this section, we evaluate how the core constructions
and hyper parameters of PFCNNs affect performance. We
also study the impact of normalization on deformable do-
main tasks, as well as the behavior around singular vertices.

Using frames and grouped features. We evaluate the
performances of different configurations that add compo-
nents of the PFCNN construction one-by-one onto a base-
line model. The evaluations are done on the task of human
body registration by vertex classification (Sec. 6.1).
• Baseline model. When using principal curvature

frames as coordinate frames of the tangent plane, we
have a baseline model similar to a bunch of recent pre-
vious works [3, 30, 48, 42]. Using the network struc-
ture similar to PFCNN but without aligning the tangent
planes by flat connections or feature map grouping by
cover sheets, the trainable convolution kernel param-
eters are actually 16 times of PFCNN. However, the
accuracy for this baseline configuration is 83.29% (Ta-
ble 4), much lower than PFCNN.

• Principle curvature frames as 4-direction field. As
a modification to the baseline model, we regard the
principal curvature frames as a 4-direction frame field
and apply the PFCNN network. The result accuracy is
89.8% (Table 4), much higher than the baseline model,
while using only 1/16 trainable parameters. The im-
provement demonstrates that even if the frame field
is not globally optimized to be smooth or aligned to
salient features, by using its encoded flat connections
that enable local translation equivariance and its in-
duced cover space feature maps that sample tangent di-
rections, the feature learning is significantly improved.

• Full PFCNN model. By additionally optimizing for a
parallel frame field that aligns to geometric features,
the PFCNN framework further improves to 92.01%
registration accuracy (Table 4).

Frame symmetry order. As discussed in Sec. 4.3, when
the rotational symmetry order N of the frame field gets

Table 6. Classification accuracy with different normalization.
Ours MDGCNN

Normalization BN IN BN IN
Accuracy(%) 11 99.5 14.0 99.5

larger, the frame field has more flexibility to achieve both
smoothness and alignment to salient features. However, an
increased N also leads to larger computational cost, as the
size of feature maps to compute increases too.

We tested the different N values again with the registra-
tion by vertex classification task, but modified the network
structure to make sure each group of the feature map has
the same size (i.e. 64), so that for different N the amount of
trainable convolution kernel parameters remains the same.
The performances for different N are shown in Table 5. We
can see that the choice of N = 4 strikes a balance between
accuracy and computational overhead: for N < 4 the ac-
curacy is notably lower due to the limited field smoothness,
and for N > 4 the computational cost is higher, with the
extra runtime roughly in proportion to the number of axes
sampled. We have usedN = 4 for all the other experiments
in this paper.

Normalization. It is well known that normalization can
speed up the training procedure and make it more stable.
Here we study the impact of different normalizations on
surface based CNNs more closely. For the registration by
classification task, we test our method and MDGCNN with
batch normalization (BN) and instance normalization (IN).
Note that since the batch size is one, the difference between
BN and IN is that, the channel wise statistics of moving
mean and average are used in testing stage for BN but not
IN. The result is shown in Fig. 4. We find that with IN both
our method and MDGCNN achieve better performances.
We repeat the experiments on the shape classification task
(Sec 6.1); the result is shown in Table 6. From all these
experiments, we can see that IN is better than BN for these
tasks on deformable domains. We argue that this is because
the diversely deformed shapes do not share common statis-
tics of channel-wise mean and variance, akin to the observa-
tion in image style transfer [31, 10, 17] that these statistics
encode styles rather than content.

Frame field singularity. As discussed in Sec. 5.1, near
singularities the translation equivariance is no longer path-
independent, but our scheme degenerates to being similar
to MDGCNN using parallel transport. To find the relation-
ship between the singularity of vertices and prediction error,
we compare the distribution of singular vertices and the er-
ror map of geodesic distance between predicted vertex and
the ground truth correspondence vertex. The distribution
is shown in Fig. 7; we can see that the singular vertices
mainly distribute on the nose, fingers or toes but the error
maps of different shapes do not reflect these similarity. We
also compare the accuracy of singular vertices and all ver-

(i)

(ii)

Figure 7. (i) shows the singular vertices in red and (ii) shows the
prediction error map. There is no clear correlation between the
singular vertices and the erroneous predictions.

tices in the registration by classification task. In particular,
on the original dataset and the remeshed dataset, the regis-
tration accuracy of singular vertices versus that of all ver-
tices are, 93.4%/94.5% and 90.2%/92.2%, indicating no
clear correlation of singular vertices and prediction errors.
Such robustness can be attributed to the degenerated con-
volution with path-dependent translation equivariance, the
consistency of singularities across shapes (see Appendix B)
and the capability of learned filters.

7. Conclusion
We have presented a surface mesh based PFCNN frame-

work that closely mimics the standard image based CNNs
and has local translation equivariance for convolutions. It
is enabled by using parallel N -direction frames that both
encode flat connections on the surface to define path-
independent translation, and sample tangent plane canoni-
cal axes to organize the convolutions by theN -cover spaces.
The PFCNNs are shown to be more effective at fine-scale
feature learning than previous surface based CNNs. In the
future, we would like to investigate how the PFCNN frame-
work can handle surface generation tasks, where the frame
field also needs to be generated rather than precomputed.

References
[1] Matan Atzmon, Haggai Maron, and Yaron Lipman. Point

convolutional neural networks by extension operators. ACM
Trans. Graph., 37(4):71:1–71:12, July 2018. 2

[2] Federica Bogo, Javier Romero, Matthew Loper, and
Michael J. Black. FAUST: Dataset and evaluation for 3D
mesh registration. In CVPR, June 2014. 6

[3] Davide Boscaini, Jonathan Masci, Emanuele Rodolà, and
Michael Bronstein. Learning shape correspondence with
anisotropic convolutional neural networks. In NIPS, pages
3189–3197. 2016. 1, 2, 4, 6, 7

[4] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Van-
dergheynst. Geometric deep learning: Going beyond eu-
clidean data. IEEE Signal Processing Magazine, 34(4):18–
42, July 2017. 1, 3

[5] Max Budninskiy, Gloria Yin, Leman Feng, Yiying Tong,
and Mathieu Desbrun. Parallel transport unfolding: A
connection-based manifold learning approach. SIAM J. Appl.
Algebra Geom., 3:266–291, 2018. 4

[6] Keenan Crane, Mathieu Desbrun, and Peter Schröder. Triv-
ial connections on discrete surfaces. Computer Graphics Fo-
rum, 29(5):1525–1533, 2010. 3

[7] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Hal-
ber, Thomas Funkhouser, and Matthias Nießner. Scannet:
Richly-annotated 3D reconstructions of indoor scenes. In
CVPR, 2017. 6

[8] Olga Diamanti, Amir Vaxman, Daniele Panozzo, and Olga
Sorkine-Hornung. Designing n-polyvector fields with com-
plex polynomials. Computer Graphics Forum, 33(5):1–11,
Aug. 2014. 11

[9] Boris A Dubrovin, Anatolij Timofeevič Fomenko, and Sergeı̆
Novikov. Modern geometry—methods and applications:
Part II: The geometry and topology of manifolds. 1, 4

[10] Vincent Dumoulin, Jonathon Shlens, and Manjunath Kud-
lur. A learned representation for artistic style. ArXiv,
abs/1610.07629, 2016. 8

[11] Matthias Fey, Jan Eric Lenssen, Frank Weichert, and Hein-
rich Müller. SplineCNN: Fast geometric deep learning with
continuous B-spline kernels. In CVPR, 2018. 2, 6

[12] Michael Garland and Paul S. Heckbert. Surface simplifica-
tion using quadric error metrics. In SIGGRAPH, pages 209–
216, 1997. 5

[13] Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
Deep Learning. MIT Press, 2016. http://www.
deeplearningbook.org. 1

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 4

[15] Hugues Hoppe. Progressive meshes. In SIGGRAPH, pages
99–108, 1996. 5

[16] Jingwei Huang, Haotian Zhang, Li Yi, Thomas Funkhouser,
Matthias Niessner, and Leonidas J. Guibas. Texturenet:
Consistent local parametrizations for learning from high-
resolution signals on meshes. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June
2019. 2, 5, 6, 7, 13, 15

[17] Xun Huang and Serge Belongie. Arbitrary style transfer in
real-time with adaptive instance normalization. In Proceed-
ings of the IEEE International Conference on Computer Vi-
sion, pages 1501–1510, 2017. 8

[18] Felix Kälberer, Matthias Nieser, and Konrad Polthier. Quad-
cover - surface parameterization using branched coverings.
Computer Graphics Forum, 26(3):375–384, 2007. 4

[19] Vladimir Kim, Yaron Lipman, and Thomas Funkhouser.
Blended intrinsic maps. ACM Trans. Graph. (SIGGRAPH),
30(4), July 2011. 14

[20] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In ICLR, 2014. 12

[21] Felix Knöppel, Keenan Crane, Ulrich Pinkall, and Peter
Schröder. Globally optimal direction fields. ACM Trans.
Graph. (SIGGRAPH), 32(4):59:1–59:10, 2013. 11

[22] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E.
Howard, W. Hubbard, and L. D. Jackel. Backpropagation
applied to handwritten zip code recognition. Neural Compu-
tation, 1(4):541–551, 1989. 3

[23] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, Nov 1998. 1, 3

[24] John M. Lee. Connections. In Riemannian Manifolds, pages
47–64. Springer New York, 1997. 3

[25] Shiwei Li, Zixin Luo, Mingmin Zhen, Yao Yao, Tianwei
Shen, Tian Fang, and Long Quan. Cross-atlas convolution
for parameterization invariant learning on textured mesh sur-
face. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 6143–6152, 2019. 2

[26] Z. Lian, J. Zhang, S. Choi, H. ElNaghy, J. El-Sana, T. Fu-
ruya, A. Giachetti, R. A. Guler, L. Lai, C. Li, H. Li, F. A.
Limberger, R. Martin, R. U. Nakanishi, A. P. Neto, L. G.
Nonato, R. Ohbuchi, K. Pevzner, D. Pickup, P. Rosin, A.
Sharf, L. Sun, X. Sun, S. Tari, G. Unal, and R. C. Wilson.
Non-rigid 3D Shape Retrieval. In Eurographics Workshop on
3D Object Retrieval. The Eurographics Association, 2015. 5

[27] Haggai Maron, Meirav Galun, Noam Aigerman, Miri Trope,
Nadav Dym, Ersin Yumer, Vladimir G. Kim, and Yaron
Lipman. Convolutional neural networks on surfaces via
seamless toric covers. ACM Trans. Graph. (SIGGRAPH),
36(4):71:1–71:10, July 2017. 2, 5

[28] J. Masci, D. Boscaini, M. M. Bronstein, and P. Van-
dergheynst. Geodesic convolutional neural networks on rie-
mannian manifolds. In ICCV, pages 832–840, Dec 2015. 1,
2, 4, 6

[29] Daniel Maturana and Sebastian Scherer. Voxnet: A 3D con-
volutional neural network for real-time object recognition.
In 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 922–928. IEEE, 2015. 2

[30] Federico Monti, Davide Boscaini, Jonathan Masci,
Emanuele Rodolà, Jan Svoboda, and Michael M. Bronstein.
Geometric deep learning on graphs and manifolds using
mixture model cnns. In CVPR, 2017. 1, 2, 4, 7

[31] Ethan Perez, Florian Strub, Harm De Vries, Vincent Du-
moulin, and Aaron Courville. Film: Visual reasoning with a
general conditioning layer. In Thirty-Second AAAI Confer-
ence on Artificial Intelligence, 2018. 8

[32] Adrien Poulenard and Maks Ovsjanikov. Multi-directional
geodesic neural networks via equivariant convolution. ACM
Trans. Graph. (SIGGRAPH ASIA), 37(6):236:1–236:14,
Dec. 2018. 1, 2, 3, 4, 5, 14

[33] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3D classification
and segmentation. In CVPR, 2017. 2

[34] Charles R Qi, Hao Su, Matthias Nießner, Angela Dai,
Mengyuan Yan, and Leonidas J Guibas. Volumetric and
multi-view cnns for object classification on 3D data. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 5648–5656, 2016. 2

http://www.deeplearningbook.org
http://www.deeplearningbook.org

[35] Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. Point-
net++: Deep hierarchical feature learning on point sets in a
metric space. In NIPS, 2017. 2, 5

[36] Nicolas Ray, Bruno Vallet, Laurent Alonso, and Bruno Lévy.
Geometry Aware Direction Field Processing. ACM Transac-
tions on Graphics, 29(1):Article 1, Dec. 2009. 3

[37] Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger.
Octnet: Learning deep 3D representations at high resolu-
tions. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 3577–3586, 2017. 2

[38] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In International Conference on Medical image com-
puting and computer-assisted intervention, pages 234–241.
Springer, 2015. 4

[39] Ayan Sinha, Jing Bai, and Karthik Ramani. Deep learning
3D shape surfaces using geometry images. In ECCV, pages
223–240, 2016. 2

[40] Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji,
Evangelos Kalogerakis, Ming-Hsuan Yang, and Jan Kautz.
Splatnet: Sparse lattice networks for point cloud processing.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2530–2539, 2018. 2

[41] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and
Erik G. Learned-Miller. Multi-view convolutional neural
networks for 3D shape recognition. In ICCV, 2015. 2

[42] Maxim Tatarchenko, Jaesik Park, Vladlen Koltun, and Qian-
Yi Zhou. Tangent convolutions for dense prediction in 3D.
In CVPR, 2018. 2, 6, 7, 15

[43] Hugues Thomas, Charles R. Qi, Jean-Emmanuel Deschaud,
Beatriz Marcotegui, François Goulette, and Leonidas J.
Guibas. Kpconv: Flexible and deformable convolution for
point clouds. Proceedings of the IEEE International Confer-
ence on Computer Vision, 2019. 2

[44] Federico Tombari, Samuele Salti, and Luigi Di Stefano.
Unique signatures of histograms for local surface descrip-
tion. In European conference on computer vision, pages
356–369. Springer, 2010. 5

[45] Amir Vaxman, Marcel Campen, Olga Diamanti, Daniele
Panozzo, David Bommes, Klaus Hildebrandt, and Mirela
Ben-Chen. Directional Field Synthesis, Design, and Process-
ing. Computer Graphics Forum, 2016. 1, 3, 11

[46] Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun,
and Xin Tong. O-cnn: Octree-based convolutional neu-
ral networks for 3D shape analysis. ACM Transactions on
Graphics (TOG), 36(4):72, 2017. 2

[47] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-
guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3D
shapenets: A deep representation for volumetric shapes. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1912–1920, 2015. 2

[48] H. Xu, M. Dong, and Z. Zhong. Directionally convolutional
networks for 3D shape segmentation. In ICCV, pages 2717–
2726, Oct 2017. 2, 7

A. Overview
In the appendix, we provide the detailed algorithms

and additional discussions for computing the parallel
N -direction frame fields, the mapping of neighborhood
patches onto tangent planes and the resampling of feature
maps there. The network structures and training details of
experiments in the text, as well as additional results and
comparisons with previous methods are also presented.

B. Computing the parallel frame fields
Given a 3D surface mesh, the smooth or parallel frame

field that approximates parallel transport of tangent spaces
for neighboring points can be efficiently constructed [45].
In particular, we adopt the complex number based ap-
proach [21, 8] to encode the N -direction fields. We identify
the tangent plane TxM with the complex plane, and a set
of unit length vectors {u · eik 2π

N |k = 0, · · · , N − 1} ⊂ C
forming a rotationally symmetric N -direction frame can be
conveniently encoded by their common N -th order power
z = uN ∈ C. To compute a smooth frame field that a)
deviates from the parallel transport minimally and b) aligns
with salient geometric features of the domain surface, we
solve the following optimization problem:

min
{zi}

.
∑
i∼j
‖zi − tjizj‖2 + λ

∑
i

wi‖zi − z0
i ‖2, (3)

where i, j are neighboring vertices on the surface mesh,
tji ∈ C is the discrete parallel transport along the edge
ij that rotates the tangent plane of j to identify with that
of i [21], λ is the weight for the second curvature direction
alignment term, wi = tanh(|kmax − kmin|) measures the
anisotropy at the i-th vertex using its maximum and mini-
mum principle curvature values kmax, kmin, and z0

i is the
complex N -th order power of the maximum curvature di-
rection at the vertex. The first term is a discretization of the
Dirichlet energy of the frame field that measures its varia-
tion and encourages parallelism. The second term encour-
ages alignment of the frame field to strong anisotropic di-
rections and salient geometric features of the surface.

As shown in Fig. 8, the smooth frame fields aligned with
salient geometric features show strong consistency among
deformed shapes, and the singular points are placed consis-
tently at regions with high curvature.

Alignment to anisotropy. We test how different balances
of field smoothness and alignment to strong anisotropy of
the surfaces affect performances. We generate four dif-
ferent sets of frames for the registration task, using λ =
0, 0.01, 0.1, 1 respectively. The testing accuracies are re-
ported in Table 7, where “SF”, meaning smooth frames
without curvature direction alignment, corresponds to λ =
0 and ‖z‖ = 1 to prevent degenerate solutions. From

Figure 8. The smooth frame fields (shown as crosses) aligned with
salient geometric features have strong consistency among diverse
human body shapes. The singular vertices marked as red points
are also distributed similarly across the shapes, concentrating on
regions of high curvature, e.g. nose, finger tips, and toes.

Table 7. Testing accuracy of different frame alignment choices,
on the FAUST non-rigid registration task by classification. SF
means smoothness only without alignment to surface anisotropy.
The other numbers are used as the curvature direction alignment
weight λ for computing the smooth frame field.

SF 0.01 0.1 1
Accu.(%) 88.56 92.01 91.97 90.77

the results, we see that a mild alignment to strong surface
anisotropic directions is helpful in achieving the best per-
formances. Therefore, we have used λ = 0.01 for all tasks
shown in other parts of the paper.

C. Tangent plane projection and resampling

The algorithm for building the convolution structure on a
local patch of a mesh vertex is illustrated in Alg. 1 in pseudo
code. For each mesh vertex, the algorithm first does a flood
searching of K neighbor vertices in O(K) and projects the
vertices onto the tangent plane using local coordinate sys-
tems. It then triangulates the projected vertices into a Delau-
nay triangulation in O(K logK), and samples H×W grid
points against the triangulation inO(HW logK). The sam-
pled grid points are finally stored into the sparse tensor that
will be reshaped as a sparse matrix and readily multiplied
with feature maps in each convolution operation (Sec. 5.2).
Note that all vertices can be processed in parallel.

In the algorithm we have abused notations slightly, us-
ing t[0] of a tuple to represent the vertex, its index, and
its spatial position; the exact meaning should be clear from
context. For a given level of domain resolution, the patch
size parameter d is set to be the average edge length of all
meshes in the given level of the training dataset.

Algorithm 1: Tangent plane projection and feature
map resampling for a local patch

Input: vi ∈ V , frames F , transport τ , patch side
length d, conv kernel shape H×W

Output: updated sparse tensor S of shape
|V |×N×H×W×|V |×N

// Flood to find and project
neighbor vertices

Q = [(vi, (0, 0), 0)], P = {}, visited = {vi};
while Q not empty do

t =dequeue(Q), P = P ∪ t;
if dist(vi, t[0]) >

√
2d or ‖t[1]‖ >

√
2d then

continue;
end
for vk ∼ t[0], vk /∈ visited do

visited = visited ∪ vk;
ulvk = τt[0],vk(u

t[2]
t[0]);

v′k = 0.5 · (F t[2]
t[0] + F lvk)(vk − t[0]) + t[1];

enqueue(Q, (vk,v
′
k, l));

end
end
// Triangulate the projected points
DT (P) = Delaunay triangulation of {t[1]|t ∈ P};
// Resample with a regular grid

sized d×d
for j = 1, · · · , N do

for grid point pr,c, 1 ≤ r ≤ H, 1 ≤ c ≤W do
find the containing triangle in DT (P) with

vertices corresponding to (ta, tb, tc) ⊂ P ;
compute barycentric weights (wa, wb, wc);
S(i, j, c, r, ta[0], ta[2]) = wa;
S(i, j, c, r, tb[0], tb[2]) = wb;
S(i, j, c, r, tc[0], tc[2]) = wc;

end
end

D. Network structures and training details
We have used convolution kernels with spatial size 5×5

for all deformable domain tasks, and 3×3 for the semantic
scene segmentation. All our networks have been trained
with the Adam solver [20] and batch size one, with fixed
learning rate 10−4.

The network structure used for SHREC’15 non-rigid
shape classification is shown in Fig. 9. It is trained for 50
epochs on a single GPU. For the variant network without
any normalization layers, it needs to train for 100 epochs
until convergence.

The network used for the human body segmentation task
is shown in Fig 10. It has three level-of-details. The loss
function is the summation of cross entropy between pre-

PFConv, ReLU
Feature reduce

Max pooling

FC

PFConv residual block

Global average pooling

Nx64 Nx64 64

64

50

Level 0

Level 1

Level 2

192

Nx64 Nx64

Nx64 Nx64 64

Nx64

Nx64

NxHxWx4

Figure 9. The network used for SHREC’15 non-rigid shape clas-
sification task. Each box represents a feature map of shape V×C,
where C is the total feature size for all N=4 cover sheets and
given by numbers aside the boxes, and V the number of surface
vertices. The input feature map is a 4-channel feature of H×W
grid points for each vertex (Sec. 5.2). The “convolution through
residual block” contains two sequential residual blocks, with each
block made by two convolutions that retain the input feature size.
All convolution operations except the last one are followed with
instance normalization and ReLU. Global average pooling is a
standard average pooling over all vertices. For this dataset there
are around 10k, 1700, 300 vertices for the three level-of-details,
respectively.

NxHxWx4 Nx32 Nx32

Nx32 Nx32

Nx64 Nx32 Nx32

PFConv, ReLU

Max pooling

Conv 1x1

PFConv residual block

Copy
Average unpooling

8Nx32

Nx32 Nx32 Nx64 Nx32

Figure 10. The network used for the human body segmentation
task. See caption of Fig. 9 for detailed explanation. The number
of vertices for the three level-of-details are V, V/3, V/9, where
V is the number of vertices of each mesh in the dataset. In the
original dataset, V varies from 3k to 12k. For the remeshed data,
V is around 7k.

dicted segmentation label and the ground truth label for
each mesh vertex. The network is trained for 50 epochs. To
obtain the predicted per-face segmentation labels, we sam-
ple points for each face of a test mesh and project the points
onto closest vertices of our remeshed models, whose labels
are used to vote for the face label of the original test mesh.

The network used for the human body registration task
by vertex classification, and testing different frame field
symmetry ordersis is shown in Fig. 11. The network is
trained for 400 epochs.

NxHxWx4 Nx64 Nx64 Nx64 256 6890/5000

PFConv, ReLU

Conv 1x1
PFConv residual block

Feature reduce

64

Figure 11. The network used for human body registration through
a classification of mesh vertices into 6890 or 5000. The number
of surface vertices is 6890 for the original dataset and 5000 for the
remeshed dataset. See caption of Fig. 9 for detailed explanation.

NxHxWx4 Nx64 Nx64

Nx64 Nx64

Nx64Nx64

Nx128 Nx64

Nx128 Nx64 Nx64 Nx6

PFConv, ReLU
Feature reduce

Max pooling

PFConv 1x1

PFConv residual block

Copy
Average unpooling

6

Figure 12. The regression network used for human body regression
task. See caption of Fig. 9 for detailed explanation. The number
of surface vertices are around 10k, 3.2k, 1k for the three level-of-
details respectively.

NxHxWx8 Nx64 Nx64

Nx128 Nx128

Nx128 Nx64 Nx647 2164

Nx128 Nx128 Nx256 Nx128 Nx64

PFConv, ReLU

Feature duplicate

Max pooling

Conv 1x1

PFConv residual block

Copy

Average unpooling

Feature reduce

Nx64 Nx128

NxHxWx7

NxHxWx1

Figure 13. The network used for ScanNet segmentation task. See
caption of Fig. 9 for detailed explanation. The input include the
7-channel feature of each vertex and the 1-channel local height
feature for each grid point. The number of vertices for the three
level-of-details are V, V/3, V/9, where V is the number of ver-
tices of each cropped chunk, with the crop method same as [16].

The network used for the ScanNet semantic scene seg-
mentation task is shown in Fig. 13. The network outputs,
for each vertex, the probability distribution of 21 segmenta-
tion labels, which is compared with ground truth label using
cross entropy during training. It is trained for 30 epochs.

E. More results and comparisons

Shrec’15 classification We show some results in the clas-
sification task in Fig. 14; the single misclassified shape by

Figure 14. In the first row left shows the single incorrectly classi-
fied shape by our method; it is an “ant” misclassified as “spider”
(an example shown on the right, is indeed confusingly similar to
“ant”). In the second row we show more shapes in the SHREC’15
dataset, which are “camel”, “horse” and “cat”.

0 1 2 3 4 5 6 7
Genus

0

5

10

15

20

25

Co
un

t

Faust Real Scan

Figure 15. Genus of the meshes in the FAUST real scan dataset.
More than half of the meshes have genus larger than 1.

our method is a challenging “ant” that looks similar to the
wrong label “spider”.

Non-rigid registration by fitting template embedding.
In this part we present an application that resolves the non-
rigid registration problem with an approach different from
the per-vertex classification (Sec. 6.1). We notice that the
registration by classification has severe limitations in real
applications: to classify each vertex to 6k classes for exam-
ple is not scalable when there are many input vertices, and
the classification error does not measure at all how far away
a mis-classified vertex is from ground-truth. Thus we pro-
pose a novel but simple method for non-rigid registration
that uses a surface-based CNN for direct regression of the
template embedding in R3.

We evaluate on the real scans of the FAUST dataset,
which has 80 meshes for training and 20 for test. The
meshes are noisy, with diverse and high genus for different
poses of a same person (see Fig. 15 for statistics), which is
frequently due to the merging of spatially intersecting com-
ponents. Since the raw scans are very dense meshes, we
have remeshed each raw scan to simpler meshes with the
number of vertices around 10k. For each real scan there is
a registered deformed template mesh, which provides the
ground truth embedding for supervision and testing. To be
specific, we project a vertex of the real scan to the closest
point on the registered deformed template mesh, and take

(i)

(ii)

(iii)

Figure 16. Results of non-rigid human body registration through
regression of the template embedding coordinates. (i) shows the
texture mapping using the groundtruth correspondence. (ii) is the
results of [32]. (iii) shows our results.

0.0 0.01 0.02 0.03 0.04 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
Geodesic Error

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy Ours

MDGCNN

Figure 17. The ratio of vertices whose error is bellow given thresh-
old. The per-vertex error is the geodesic distance between the pre-
dicted point position and ground truth on the template surface, nor-
malized by square root of surface area. Our accuracy under 0.03
is 97.98% while [32] is 69.37%.

its position and normal vectors on the rest pose template as
the supervising regression target.

The network for this point-wise regression is a standard
UNet structure as shown in Fig. 12. For each vertex of an
input raw scan mesh, the output contains the position and
normal vectors of the corresponding point on the rest pose
template mesh. The training loss is

L =
1

V

V∑
i

‖pi − p0
i ‖1 +

wreg
Vi

∑
j∼i
‖pi − pj‖1

+
wn
V

V∑
i

‖ni − n0
i ‖1 +

wreg
Vi

∑
j∼i
‖ni − nj‖1

+
wcon
E

∑
i∼j
|ni · (pi − pj)|,

where V is the number of vertices of the raw scan mesh, p
the regressed vertex position, p0 the target position, n the
regressed vertex normal, n0 the target normal, wn = 0.1
to normalize different scales between position and normal
in the dataset, wreg = 0.2 the weight for Laplacian reg-
ularization terms of position and normal, wcon = 20 the
weight for normal and position consistency, Vi the number

of neighboring vertices of the i-th vertex, andE the number
of directed mesh edges. We use l1 norm for these losses be-
cause there are noisy vertices in the raw scans which do not
have valid target points on the template surface. We train the
network for 200 epochs on single GPU using Adam solver
with a fixed learning 1× 10−4.

Geodesic errors of the network predictions on the test set
are shown in Fig. 17. Following [19], the geodesic error for
a surface point x with predicted position y and ground truth
point y∗ on the template surfaceM is computed as ε(x) =
dM(y,y∗)√
|M|

, where dM(·, ·) computes the geodesic distance

of two points projected onto the surfaceM, and |M| is its
area for normalization. Visual results are shown in Fig. 16.
It is clear that our results are better than MDGCNN both
quantitatively and qualitatively on these real scans, and the
difference seems to be more obvious than the registration
by vertex classification task on the clean meshes (Sec. 6.1).

More results of ScanNet segmentation. We present the
per-category prediction accuracy (measured by IoU) of
comparing methods for ScanNet semantic segmentation in
Table 8 and Table 9. For Ours*, the network structure is
similar to the network shown in Fig. 13, but each “PFConv
residual block” contains three sequential residual blocks
and the feature sizes in three levels are changed to 128, 256,
512, respectively. More visual results are shown in Fig. 18.

(i) (ii) (iii) (iv) (v)
Figure 18. More results of Scannet segmentation.(i) is the ground truth segmentation; (ii) is the results of [42] (iii) is the results of [16]; (iv)
shows our results. (v) is the result of our method with deeper network. Our method gives clearer boundaries, like the boundary between
window and wall in the second row, the boundary between picture and wall and the boundary of sink in the last row.

Table 8. Per-category IoU on ScanNet validation set. The abbreviations respectively stand for “bathtub, bed, bookshelf, cabinet, chair,
counter, curtain, desk, door, floor, otherfurniture, picture, refrigerator, shower, curtain, sink, sofa, table, toilet, wall, window”. The highest
accuracies both among the three comparing results and among the four comparing results with our additional increased network are marked
in bold.

Method mIoU bath bed book cab chr cntr crtn desk door flr other pic refrg shwr sink sofa tab toil wall wdw
[42] 49.1 68.0 63.8 56.3 41.7 73.6 45.6 33.2 40.7 34.9 91.9 26.2 14.5 31.7 28.1 44.2 62.8 51.5 68.8 67.9 38.3
[16] 58.1 67.6 67.3 71.3 46.8 78.1 44.4 52.5 47.5 44.8 94.4 40.2 21.1 35.2 51.3 51.7 64.0 63.5 80.3 75.0 46.0
Ours 63.3 79.7 70.3 73.7 55.6 81.0 53.9 70.1 53.1 50.0 93.7 42.3 30.3 46.3 55.6 60.1 66.4 60.9 87.3 78.7 56.5

Ours* 66.2 81.6 73.0 77.0 56.8 83.3 62.8 70.9 55.8 52.3 94.0 46.4 33.1 51.7 60.9 61.2 72.3 65.0 87.7 80.0 58.6

Table 9. Per-category IoU on ScanNet test set. See caption of Table 8 for explanations.
Method mIoU bath bed book cab chr cntr crtn desk door flr other pic refrg shwr sink sofa tab toil wall wdw

[42] 43.8 43.7 64.6 47.4 36.9 64.5 35.3 25.8 28.2 27.9 91.8 29.8 14.7 28.3 29.4 48.7 56.2 42.7 61.9 63.3 35.2
[16] 56.6 67.2 66.4 67.1 49.4 71.9 44.5 67.8 41.1 39.6 93.5 35.6 22.5 41.2 53.5 56.5 63.6 46.4 79.4 68.0 56.8
Ours 60.2 74.6 71.2 67.4 53.5 75.6 41.6 68.1 42.0 43.4 93.8 40.1 27.0 51.2 51.1 61.2 69.4 48.3 84.7 77.7 61.5

Ours* 62.2 79.7 69.7 75.0 57.7 79.2 47.6 68.5 36.6 46.8 94.2 41.4 30.7 53.2 49.4 68.1 71.5 47.5 88.0 79.6 59.3

