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Fig. 1. Sketches and the corresponding 3D shapes computed by our method. Portions of the contour curves (red) are re-sketched to provide nontrivial
boundary position data (Sec. 4), lifting teddy limbs, gecko head, and bending fish body. Purple curves of the human sketch are specified with target curvature
hints (Sec. 3.1). For each sketch, our method uses a CNN to predict the 3D surface patch. Two or more surface patches are fused into the complete shapes.
Back (bottom) views reuse contour curves of the front (top) views; only interior strokes are drawn there. The triangle sketch for the fish is used to model its
side fins. Note that darker and over-sketched strokes generally correspond to stronger curvatures, which looks natural and intuitive.

Sketching provides an intuitive user interface for communicating free form
shapes. While human observers can easily envision the shapes they intend
to communicate, replicating this process algorithmically requires resolving
numerous ambiguities. Existing sketch-based modeling methods resolve
these ambiguities by either relying on expensive user annotations or by
restricting the modeled shapes to specific narrow categories. We present an
approach for modeling generic freeform 3D surfaces from sparse, expressive
2D sketches that overcomes both limitations by incorporating convolution
neural networks (CNN) into the sketch processing workflow.

Given a 2D sketch of a 3D surface, we use CNNs to infer the depth and
normal maps representing the surface. To combat ambiguity we introduce
an intermediate CNN layer that models the dense curvature direction, or
flow, field of the surface, and produce an additional output confidence map
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along with depth and normal. The flow field guides our subsequent sur-
face reconstruction for improved regularity; the confidence map trained
unsupervised measures ambiguity and provides a robust estimator for data
fitting. To reduce ambiguities in input sketches users can refine their input
by providing optional depth values at sparse points and curvature hints
for strokes. Our CNN is trained on a large dataset generated by rendering
sketches of various 3D shapes using non-photo-realistic line rendering (NPR)
method that mimics human sketching of free-form shapes. We use the CNN
model to process both single- and multi-view sketches. Using our multi-view
framework users progressively complete the shape by sketching in different
views, generating complete closed shapes. For each new view, the modeling
is assisted by partial sketches and depth cues provided by surfaces generated
in earlier views. The partial surfaces are fused into a complete shape using
predicted confidence levels as weights.

We validate our approach, compare it with previous methods and al-
ternative structures, and evaluate its performance with various modeling
tasks. The results demonstrate our method is a new approach for efficiently
modeling freeform shapes with succinct but expressive 2D sketches.
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1 INTRODUCTION
2D line sketch depicts rich geometric features of 3D shapes such as
silhouettes, occluding and suggestive contours, ridges and valleys
and hatching lines, and thus provides a succinct and intuitive way
for 3D shape illustration, for which a set of non-photo-realistic
rendering (NPR) methods [Cole et al. 2008, 2009; DeCarlo et al. 2003;
Hertzmann and Zorin 2000; Judd et al. 2007] have been successfully
developed to automatically extract expressive sketches from 3D
shapes. The inverse process of modeling 3D shapes from sparse 2D
sketches also demonstrates its great potential formodeling free-form
surfaces that are difficult for traditional CAD systems. However, this
inverse problem is much more challenging because of the inherent
ambiguity due to sketch simplicity and 2D to 3D dimension elevation.
Many previous works apply hand crafted geometric priors to remove
the ambiguity; examples include [Igarashi et al. 1999; Nealen et al.
2007] for modeling smooth surfaces of the biharmonic type which
fit to the lines, [Chen et al. 2013; Shtof et al. 2013] for symmetrical
generalized cylinders and other primitives which have the lines as
profiles, [Iarussi et al. 2015; Li et al. 2017; Xu et al. 2014] for freeform
shapes with principal curvature lines traced by the sketched lines,
and [Jung et al. 2015] for developable surfaces with lines depicting
folds, etc. While these methods have great modeling capability, they
generally require the user to annotate the sketches in detail so that
their respective geometric priors can be applied. Recently, emerging
works use data-driven approaches and train an all-encompassing
machine learning model, e.g. a convolutional neural network (CNN),
to map the input sketches to 3D shapes directly [Delanoy et al.
2017; Lun et al. 2017]. These methods resolve the ambiguity issue by
building a specific machine learning model for each object category
(e.g. chairs, planes, characters), which however restricts the modeled
shapes to the categories having large 3D datasets for training.
In this paper, we present a sketch-based approach that enables

modeling generic freeform surfaces and complete 3D shapes with
sparse but expressive user interactions. In particular, the user draw
line sketches in a 2D plane to model a surface patch represented by
depth and normal map; sketching incrementally in multiple viewing
planes produces surface patches that form complete shapes. The
core of our method is a CNN that maps input 2D sketches to regular
freeform surfaces that capture the intention of sketch.
We train the CNN on a large generated dataset with diverse 3D

shapes and planar sketches rendered by NPR methods that mimic
how humans depict the models. A naive CNN structure trained
for such a task performs poorly, due to the inherent ambiguity of
varying 3D shapes corresponding to the same sparse input sketches.
Without category-specific priors for modeling generic freeform
surfaces, we resolve ambiguity by using basic geometric and statis-
tical principles. First, instead of mapping from sketch to geometry
directly, we introduce an intermediate layer of dense curvature
direction (flow) field, which the CNN first regresses and then com-
bines with the sketch to infer the result surface. Flow field provides
dense local guidance for geometry inference and leads to more reg-
ular surfaces with enhanced variation responding to sketched lines.
Second, we explicitly model the perceived ambiguity of a sketch
with a confidence map that is low on uncertain regions and high
otherwise. While apparent to human observers, the ambiguity or

confidence map is hard to quantify with hand-crafted rules. We let
CNN predicts the confidence map instead, and train it in an unsu-
pervised way through the use of robust statistics. Finally, we allow
modifying the predicted surfaces, by making the CNN capable of
taking optional user specifications of sparse points with depth cues,
or sharp features and surface curvature hints along strokes.

Based on single view surface modeling, we also develop a multi-
view system to progressively create a complete 3D shape by sketch-
ing in different views. After a surface patch is sketched in a previous
view, the user rotates and updates the partial 3D shape by sketching
in the new view, where partial sketches rendered and depth cues
sampled from existing surfaces can assist the modeling. Finally, a
complete 3D shape is generated by fusing the surfaces weighted by
their corresponding confidence maps.

We validate our approach with extensive examples, and compare
it with previous methods, alternative structures and other networks
for modeling category-specific objects. Results show our network
produces regular shapes with rich variations and subtle details while
requiring less user input. Evaluation by novice users also shows
that our tool makes the modeling of freeform shapes efficient and
accessible for common users.

2 RELATED WORK
Sketch-based freeform shape modeling has accumulated a rich litera-
ture throughout the decades of research. However, we very roughly
divide the previous works into two groups, one being the more
classic geometric inference methods that rely on geometric priors
to reconstruct 3D shapes, and the other being data-driven methods
that build machine learning models to learn priors from particular
3D shape datasets and infer shapes. Our approach actually borrows
ideas from both groups, as we foremost build on geometric princi-
ples, including the mapping between projected curvature directions
and 3D shapes and normal/depth consistency, to solve the generic
freeform modeling problem, but also draw on the powerful fitting
capability of CNNs to carry out the many-factor nonlinear tasks of
parsing sketches and generating dense curvature direction fields,
and mapping from the projected geometric data to spatial depth and
normal. Below we briefly discuss the most related previous works.

Geometric inference methods. A large number of previous works
have focused on developing effective geometric principles, based
on which it is possible to accurately infer 3D shapes from user
sketches without ambiguity. The user sketched contours combined
with membrane functionals [Igarashi et al. 1999; Joshi and Carr 2008;
Nealen et al. 2007; Yeh et al. 2016; Zhang et al. 2001] or other smooth
interpolation functions [Bernhardt et al. 2008; Olsen et al. 2011;
Schmidt et al. 2005] can quickly determine smooth low-frequency
3D shapes. Sketched profile curves deform and blend user annotated
primitives (e.g. generalized cylinders, pyramids, etc) to form complex
shapes [Chen et al. 2013; Gingold et al. 2009; Shtof et al. 2013]. Based
on how artists depict freeform shapes with a regulated combination
of contours, features, and representative surface curvature lines, a
series of works [Bae et al. 2008; Iarussi et al. 2015; Li et al. 2017;
Schmidt et al. 2009; Shao et al. 2012; Xu et al. 2014] resolve the 2D
to 3D ambiguity and convert planar sketches to 3D data.
Our method uses a data-driven approach to learn the geometric

inferences based on the same set of principles, i.e. shape regularity
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and shape from contour, feature and representative curvature lines.
On the other hand, while these previous methods rely on detailed
user annotations to parse the sketches into curves of different func-
tions and often use expensive nonlinear numerical optimizations
to solve the 2D to 3D conversion, we utilize CNN models to parse
the sketch and infer the geometry with improved efficiency and
reduced user sketch and annotations. See Sec. 5.2 for comparisons.

Data-driven methods. For many common objects and scenes, it
is usually reasoned that we humans envision their 3D shapes by
first recognizing what they are and then matching a prior shapes
of the same category in memory to the observations. This idea
underlies a range of data-driven methods for sketch-based modeling,
as they generally separate the modeling task into two steps: first
search matching shapes through a database against an input sketch,
and then adapt the retrieved shapes as necessary to fit the input
sketch. Examples include pure sketch-based retrieval [Eitz et al. 2012;
Su et al. 2015; Wang et al. 2015c], and retrieval with subsequent
adaptation and composition, like Sketch2Scene [Xu et al. 2013] for
scene modeling and [Guo et al. 2016; Lee and Funkhouser 2008; Xie
et al. 2013] for object modeling.While these approaches significantly
ease the user burden by providing abundant a prior knowledge for
a specific category of objects that the user tries to model, the tool
built for one category however does not generalize to others. In
comparison, our machine learning model learns the more generic
geometric reconstruction process rather than the knowledge of
class-specific 3D objects, which makes our method possibly less
efficient for modeling a particular class of objects but more generic
with finer levels of shape control provided to the user.

Later works in this domain do not explicitly separate the model
searching and adapting steps, but rely on the powerful deep neural
networks to map directly from sketch to 3D data, examples including
[Delanoy et al. 2017; Lun et al. 2017; Su et al. 2018]. [Su et al. 2018]
predicts normal maps from a category-specific 2D sketch by an
encoder-decoder network, which minimizes normal fitting loss and
adversarial loss, and takes as optional input user specified normal
samples. [Delanoy et al. 2017] uses a CNN to map sketches to a
volumetric occupancy grid representing the 3D shape, and allows the
incremental update of the shape through an updater CNN as the user
sketches in new views. However, it is shown that the CNN trained
for each object category does not generalize to other categories.
Besides, the volumetric representation restricts the resolution of
modeled shapes. The work by Lun et al. [2017] inputs category-
specific planar sketches from canonical viewpoints (front, side, top)
to a CNN with an encoder and thirteen decoders, each of which
outputs the depth and normal maps for one of thirteen predefined
viewpoints, which are then fused together into a 3D mesh.

Different from [Delanoy et al. 2017] and [Lun et al. 2017] that
solve the generation of complete 3D shapes of trained categories, our
work focuses on modeling freeform surfaces that are represented as
depth maps, while also providing a multi-view fusion approach to
combine the surfaces into full 3D models. By modeling a surface at
a time using general geometric rules and learned priors for shape
from sketch, our approach is agnostic to shape categories. However,
we note that to break up a complete 3D shape into multiple surface
patches to be modeled sequentially is not always straightforward

to conceive for users, which we regard as a due price to pay for the
category-free advantage. To help the user modeling, our multi-view
interactive process allows the user to sketch in arbitrary views for
different parts of the shape incrementally, with surfaces modeled in
other views assisting the sketching in new view (Sec. 4).

Procedural and parametric models provide another kind of prior
knowledge, which effectively reduces the modeling task to a map-
ping from sketches to model parameters. Many works learn the
mapping from data, for modeling urban architectures [Nishida et al.
2016], faces [Han et al. 2017], and others [Huang et al. 2016]. These
methods are tailored for the given parametric models and do not
generalize to other freeform shapes.

Recent works directly reconstruct from 2D images the 3D shapes
and scenes represented in depth and normal maps [Eigen and Fergus
2015; Tatarchenko et al. 2016; Wang et al. 2015a], point cloud [Fan
et al. 2017] or volumetric grids [Choy et al. 2016; Tatarchenko et al.
2017; Wu et al. 2016], utilizing data-driven and CNN models. In
this paper we focus on reconstructing high quality 3D shapes from
sketches which contain much sparser information than images, and
provide the user convenient control for 3D modeling.

3 SINGLE VIEW MODELING
In a single view, we recover depth and normal data from a sparse
planar sketch. There are two primary challenges for this process.
First, the sparse strokes in a sketch have different meanings, each af-
fecting proximate regions of the corresponding 3D shape differently;
we need to parse the strokes consistently and interpolate their data
over the entire planar region to infer the 3D surface. To solve this
problem, we rely on a CNN model to parse the different input lines
automatically with minimal user specification, thus saving much
user effort. See Fig. 2 for an example where the ridges and valleys
are distinguished automatically from input unlabeled strokes.
Second, the 2D sketches have inherent ambiguity of what 3D

shapes they represent, which can fail whatever powerful machine
learningmodel that tries brute force regression of the reconstruction.
Previous approaches resolve the ambiguity usually by restricting to
shapes of common classes; as a result, such a model works well for
the particular category it is trained for but does not generalize to
others [Delanoy et al. 2017; Lun et al. 2017]. We instead strive for
more general freeform shapemodeling and focus on using geometric
principles with optional user input to combat ambiguities.
To summarize, at the core of our single view modeling is a two-

stage CNN regression model (Fig. 2):

• Given the input sketches, a first stage subnetwork (DFNet)
regresses the flow field, a dense signal that describes the
surface curvature directions and guides its reconstruction
(Sec. 3.2).

• A second stage subnetwork (GeomNet) takes the sketch and
flow field guidance, and predicts depth/normal maps, and a
confidence map that shows how much ambiguity there is for
each point of the input sketch (Sec. 3.3).

In addition, the user can further modify the surface and resolve
ambiguity, by providing curvature hints over strokes, or depth values
on sparse sample points; our CNN model is trained to utilize these
optional inputs. Next we discuss the single view modeling in detail.
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Input sketch, mask, depth 
sample, curvature hints Flow field

DFNetDFNet

GeomNetGeomNet

Front

Back

DFNetDFNet

GeomNetGeomNet

Fusion

Output confidence map, surface

Fig. 2. The algorithm pipeline. This example is sketched in two views. The input for single view CNN contains the sketch, its silhouette mask, optional depth
sample points and curvature hints (Sec. 3.1). An intermediate flow field is generated by the DFNet sub-network (Sec. 3.2), and further combined with input to
feed into the GeomNet sub-network (Sec. 3.3) which predicts depth, normal and confidence maps. Part of the front surface contour (highlighted in red) is
modified by re-sketching (Fig. 5) to lift the wings. Subsequent back view sketching reuses contour from the front surface. Finally, surfaces from the two views
are fused into a complete shape (Sec. 4). See accompanying video for interaction process.

3.1 Input and output
Input. The input to single view modeling is primarily the 2D

sketch represented by a gray scale image of a single channel, de-
picting the parallel projection of a 3D object on the current view.
We require the distinction of contours and occluding contours from
other strokes in the sketch, by forcing the (occluding) contours to be
pure black and the other strokes to have nonzero gray scale values.
This distinction is critical to clearly specifying where the depth
and normal discontinues with (occluding) contours, while the rest
strokes, including ridges/valleys, suggestive contours, curvature
lines, etc., mainly describe the smooth shape variation. Indeed, such
a line style complies with NPR literature [Rusinkiewicz and De-
Carlo 2013], which shows that people use strong lines to emphasize
boundaries, discontinuities and large curvatures. Our training data
generation and modeling tool follows the style. Figs. 1,2,15 show
examples of how the stroke style naturally leads to different surface
variations. Note that for real user sketches, the input strokes repre-
sented by polylines are slightly smoothed to remove noisy artifacts
before being rendered and fed to the network.

{mi = 0}

{αi = 1}

contourBinary masks are built out of the input
sketches and used for network input and train-
ing loss computation. Sketch silhouette mask
{mi } delineates the foreground object with
mi = 1 from background withmi = 0 (inset,
black), and is computed by a flooding process that starts from back-
ground pixels and stops at arbitrary sketch pixels; for sketches with
holes, the user must pick a background point inside each hole to en-
able proper mask computation. {mi } is input to the network. Shape
silhouette mask {m′

i } for a training sample is the foreground pixel
mask of rendered geometry; it usually differs from sketch silhouette
mask {mi } by shrinking for a small margin, because the silhouette
lines do have a width of several pixels. A signal filtering mask {αi }
(inset, white) removes invalid signals at pixels of discontinuous
(occluding) contours, sharp features if any and background. {m′

i }

and {αi } are used for training loss evaluation.
Depth samples are optional input to provide depth cues at certain

points. They are encoded by a single channel map, with pixels of
sample points having specified depth values and other pixels zero
value (the 3D models have been positioned to ensure positive depth

values). A sample point can be placed along contours and encoded
by a single pixel, or inside the contour encoded by a 3x3 pixel patch.

Curvature hints are optional user inputs to specify the existence
of sharp features where surface normal goes through abrupt change,
and surface curvature, or how surface normal changes, across ridge,
valley or sharp features. We use a map with three channels to encode
the hints. One channel is a binary mask that is 1 for pixels of sharp
features, and 0 otherwise. A second channel is a binary mask to
indicate the existence of target curvatures whose values are given
in the third channel. The target curvature value is t⊥ · ∆n ∈ [−2, 2]
for a pixel on stroke, where t is the unit tangent vector of the
corresponding spatial curve on the training 3D model, ⊥ is to rotate
the vector for 90◦ in the tangent plane, and ∆n is the difference of
surface normal vectors along t⊥ for a fixed step size (we use 3% of
object bounding box diagonal length). Note the sign of curvature
value denotes the convexity of surface across the stroke.

In total, the input map to our CNN for surface prediction has 6
channels.

Output. The output map consists of depth with 1 channel, normal
vector with 3 channels, and confidence value with 1 channel. The
output map is of the same resolution as input.
While the image size can be arbitrary because the CNN is fully

convolutional, we have used 256 × 256 for a balance between the
quality of 3D data and the training cost.

3.2 Flow field regression
Many lines in a sketch provide information about the surface bend-
ing (or curvature) directions, which is essential for recovering the
3D shape, as is shown in previous works [Bui et al. 2015; Iarussi
et al. 2015; Li et al. 2017; Shao et al. 2012]. Rather than parsing
the strokes and solving the flow field through heuristic algorithms
and nonlinear optimizations as is done previously, we automate the
entire process through CNN prediction.
It is worth mentioning that in [Groueix et al. 2018] an atlas pa-

rameterization is used to regulate the surface predicted by a decoder
network. Similarly in our framework, the flow field provides for the
second stage geometry reconstruction a locally smooth guidance at
each point of the 2D domain, to enable the regulated propagation
of data. It leads to more regular shapes with enhanced variations,
as shown in Sec. 5.4.
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Fig. 3. Structure of DFNet. It is an encoder-decoder network with three
domain resolutions. The input is a 6-channel image containing the sketch,
its silhouette mask, and optional depth samples and curvature hints. The
output is the 4-channel flow field. Numbers aside each feature map show
its spatial size and the number of channels.

The DFNet sub-network (Fig. 3) is an encoder-decoder structure
based on the commonly used U-Net [Ronneberger et al. 2015], with
three levels of image resolutions. Given all inputs as discussed be-
fore, the network outputs a dense map with four channels ci =
(ci0, ci1, ci2, ci3) for the i-th pixel, which encode a non-orthogonal
4-direction field u, v ∈ C through u2 +v2 = c0 + ic1, u2v2 = c2 + ic3,
following [Diamanti et al. 2014]. Such a representation facilitates
the comparison of directions at neighboring pixels by avoiding the
need to match individual directions.
To train the network, we minimize the following loss function:

Ef ield = Edata + γEvar ,

where
Edata =

1∑
αi

∑
i
αi
��ci − c0i

��
measures the absolute difference of regressed field from the pro-
jected curvature direction field {c0i } of the 3D shape, and

Evar =
1∑
αi

∑
i
αi

∑
k∼i

|ci − ck |

is the total variation of the regressed field, with the k-th pixel the
right or upper neighbor of the i-th pixel. The penalty of field total
variation is necessary, because the sparse sketch lines representing
surface bending directions do not fully capture the variance of the
ground truth projected direction field, and we encourage a regular
direction field to be derived from the lines instead. We have used
γ = 0.1.

The signal filtering mask {αi } resets loss at pixels covered by
(occluding) contour lines, sharp features if any, and background.
Reasons for using the mask are, first, the normal vectors for points
on (occluding) contours face away to the sides and the projection of
3D curvature directions degenerates there, rendering the training
data on these pixels unreliable, and second, the surface discontinues
on (occluding) contour pixels and there is no expectation of direction
field smoothness across them. When there are sharp features, their
pixels have unreliable normal vectors and are excluded from loss
computation as well. The output field is also masked by {αi } when
fed into the GeomNet sub-network.

Fig. 4. Structure of GeomNet. It is an encoder-decoder network with five
domain resolutions. The input is a 10-channel image containing the sketch,
silhouette mask, optional depth samples and curvature hints, and the flow
field. There are three decoder branches that share the same encoder, pre-
dicting depth, normal, and confidence respectively.

3.3 Robust flow-guided surface regression
The input sketch, silhouette mask, and optional depth samples and
curvature hints are stacked together with the regressed flow field,
and fed into the GeomNet sub-network for predicting normal and
depth maps representing the 3D surfaces. GeomNet (Fig. 4) is an
encoder-decoder structure with five levels of image resolutions and
three decoder branches sharing the same encoder, which output
normal, depth and the confidence maps respectively. To train the
network, we minimize the following loss function:

Etotal = Erobust_dn + βEsample + λEr eд .

Robust data fitting. The first term measures how much the re-
gressed depth di and normal vector ni differ from the ground truth
values d0i ,n

0
i taken from the 3D shape:

Erobust_dn =

1∑
m′
i

∑
i
m′
iw

2
i

(
σd (di − d0i )

2 + σn ∥ni − n0i ∥
2
)
+m′

i (1 −wi )
2,

where {wi |0 < wi < 1} is the confidence map.
A decoder branch outputs the confidence map through a final

layer sigmoid activation. The function of confidence map is essen-
tially a robust estimator [Black and Rangarajan 1996]: it tends to
be 1 as required by the second term in Erobust_dn to enforce the
learning of ground truth data, but will be relaxed if the regressed
depth and normal cannot match ground truth. Intuitively, the confi-
dence map estimates how much ambiguity there is for each point
of the input sketch, because ambiguity is the ultimate cause of the
mismatch for a well-trained geometry regression model. See Fig. 9
for example confidence maps showing the amount of ambiguity that
agrees with expectations.
Although ambiguity is apparent to human observers, it is hard

to quantify. Here the training of confidence map is unsupervised,
avoiding the need for ground truth data generation. The benefit of
confidence map is primarily to make learning more approachable
by relaxing the depth and normal fitting loss over highly ambiguous
regions. This is shown in the ablation test in Sec. 5.4. Moreover,
during the fusion process where surfaces from multiple views are
adapted into a complete 3D shape, it is useful for weighing the points
so that we can preserve the reliable and change the rest (Sec. 4).
Finally, it can be regarded as feedback to the user about where the
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network prediction is uncertain and can use more input data to
reduce ambiguity.
σd ,σn normalize the errors of depth and normal regression. To

estimate them, we train a straightforward regression of depth and
normal without confidence map (Sec. 5.4), and collect the mean
errors of the predicted depth and normal on the test dataset, based on
which we get σd = 920 ≈ 1/(2×0.02322),σn = 430 ≈ 1/(2×0.03392).

The robust data fitting shares similarities with the framework of
Bayesian deep learning [Kendall and Gal 2017], where uncertainties
due to both the CNN model and data noise are modeled by variables
very similar to the specific confidence map we used. However, since
in our task the training data is generated from ground truth 3D
shapes, the confidence map mostly models the uncertainty of CNN
regression model, which intuitively originates from the ambiguity
of mapping sketch to 3D shapes.

Depth sample constraint. If there are depth samples provided, the
regressed depth map at sample points should match the specified
depth values d0s , which we encourage through:

Esample =
1
S

S∑
s=1

(ds − d0s )
2,

where S is the number of pixels covered by the sample points.

Depth and normal consistency. Finally, the regressed normal vec-
tors and depth values should be consistent geometrically for a valid
3D shape, which is measured by:

Er eд =
1∑
αi

∑
i
αi

(
(ni · tix )2 + (ni · tiy )2

)
,

where tix =
(
1, 0, (dj − di )/k

)
, tiy = (0, 1, (dl − di )/k) are tangent

vectors at pixel i computed by finite difference with its right and
upper neighbor pixels j, l , and k = 0.00784 is the pixel width mapped
to the canonical scale of training data. {αi } is used to reset loss at
discontinuities.

We have used β = 5 to emphasize the matching to given sample
points. Because initially during training the regressed normal and
depth are far from being correct, we relax the consistency require-
ment, and increase it gradually; specifically, λ goes from 5×10−4 to
2, multiplying 3.985 every 5k iterations during training which has a
total of around 42k iterations. In real use cases, there is no shape
mask {m′

i } from ground truth data; the output maps are filtered
with silhouette mask {mi } instead.

3.4 Data generation and network training
Data generation. The training samples are pairs of input, i.e. a

sketch, its mask, optional depth samples and curvature hints, and
the corresponding output, i.e. projected curvature direction field and
depth/normal maps from the 3D shapes. Details of data generation
are in the supplemental material; below we give an overview.

The freeform smooth shapes used for data generation are common
models in Computer Graphics. They cover awide range of categories,
including animals, statues and characters, with details that can be
reasonably depicted by uncluttered 2D sketches. To enable user
specification of sharp features, we also generate models with sharp
creases by iteratively applying rolling guided normal filtering [Wang
et al. 2015b] to smooth shapes. By using this diverse set of objects, we

(a) (b)

(c)(d)
Fig. 5. Re-sketching contour in a side view to modify the shape. (a) the
current surface overlaid with the sketch. Parts of the contour line to re-
sketch are marked purple. (b) the surface seen in a side view, and a new
profile curve to which the marked contour would match up. (c) (d) the
surface updated with new depth cues.

make our geometric inference from sketches independent of specific
shape categories and thus targeting generic freeform shapes.
The training samples are generated by mimicking how humans

sketch to depict 3D shapes. Sketches are generated by NPR render-
ing with the program [Rusinkiewicz and DeCarlo 2013]. We select
the parameters of NPR so that for a human observer it is easy to
infer the 3D surface relatively well from the rendered 2D sketch.
Viewpoints and zooming factors for rendering are evenly sampled
in the valid range but filtered so that the observed surface patches
are large enough and mostly front-facing, which comply with how
users would generally pose the object. Optional depth samples are
placed along portions of the silhouette curves to anchor the sur-
faces; during modeling, for many shapes the contour can simply
be initialized to the drawing plane and tuned later by re-sketching
(Sec. 4). Few (less than 5) additional depth samples are generated
inside the contour, and placed over extreme depth values of the sur-
face. Optional curvature hints are randomly generated for detected
sharp features and ridge/valley curves of the 3D surface.
In total, there are 260k and 58k samples for training and test,

respectively.

Network training. The network is trained in a two-stage process.
First, we train the DFNet sub-network for 10 epochs, minimizing the
loss function Ef ield . Next, we train the GeomNet sub-network with
the loss function Etotal for 10 epochs, while fixing the DFNet. Each
network is implemented in Tensorflow, and optimized by Adam
solver [Kingma and Ba 2014] with a fixed learning rate 10−3, on a
machine with 4 Nvidia GeForce 1080Ti GPUs. DFNet training takes
8 hours, and GeomNet 16 hours.

4 MULTIPLE VIEW MODELING
Tomodel complete 3D shapes, multiple surfaces from different views
have to be used. Sketching in multiple views can model different
parts to be fused into the final complete shape. During the multi-
view process, existing surfaces can assist the modeling of new parts
by providing partial sketches and depth data at overlapping regions.
In this section we discuss how to combine our single view model-
ing network with multi-view sketching, and the convenient user
interactions enabled.

Re-sketching contour in a rotated view. The depth of contour curve
from one viewpoint becomes a profile curve when seen through a
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(a) (b) (c)
Fig. 6. Fusion of two surface patches for the duck model. (a) the first surface
is sketched, with its confidence map shown at upper left corner. The duck
wing is not easy to model in this view due to self-occlusion, with the con-
fidence map showing lower value there. In a slightly rotated view (b), the
duck wing is sketched properly, with high confidence shown at upper left
corner. (c) the two surfaces are fused tightly at overlapping regions, biased
toward the wing patch with higher confidence value.

rotated view, which makes it very convenient to modify the contour
depth of the former view by re-sketching the profile curve in the
latter view. An example is shown in Fig. 5: in the original view, part
of the contour curve which we want to modify is marked (a); it is
given a target re-sketched profile curve in another view (b), which
is used as additional depth sample cues of CNN input for updating
the surface (c)(d).

Sketching in a new view with assistance. When sketching in a new
view, the surfaces from previous views project to the current view,
which can assist the sketching and modeling in the current view. On
one hand, salient NPR curves are generated for the existing surfaces,
which the user can simply reuse. On the other hand, visible existing
surfaces provide depth cues for the current surface prediction. For
example, in Fig. 2, the contour curve along with its depth data of
the front view surface is directly copied to the back view, where the
user only needs to draw the inner strokes to model the back surface.

Multi-view fusion. In the final step, all surfaces are placed into
appropriate positions and fused into a complete 3D shape. Proximate
surfaces which have overlapping regions may not be consistent,
which we resolve by the following quadratic optimization:

min
{xi }
.
1
N

N∑
i=1

−ω0loд(1 −wi ) ·
(
xi − x0i

)2
+ ω1

(
∆xi − ∆x0i

)2
+
ω2
|P |

∑
(i, j)∈P

(
ni · (xi −Tjixj )

)2
,

where N is the number of points from all views, xi the 3D position
of the i-th point in the coordinate frame of its local view,wi the pre-
dicted confidence value, x0i the predicted position, ni the predicted
normal vector, ∆· the Tutte Laplacian operator [Gotsman et al. 2003]
for three coordinates built on the 3×3 neighborhood of a pixel (we
use the simple Tutte weight because the domain is a regular pixel
grid), and P the set of matched point pairs where the j-th point from
its corresponding view is reprojected through frame transformation
Tji into the view of i-th point to have the same x ,y coordinates as i .

To avoid erroneous matching that comes with viewing occlu-
sions and imperfect partial reconstructions, we filter out a pair of
matched points, if they have a distance above 10% of the smaller
contour bounding box diagonal length of the two views containing
i, j, or if their predicted normal vectors form an angle larger than
70◦. The confidence value is mapped to log-scale to enforce the
more reliable surfaces be preserved while less confident parts be

Fig. 7. A simple abstract shape sketched in process. To create this bumpy
plane, the user can simply draw a plane first using contours and sharp
features, and then add bumps and holes by drawing circles inside and using
depth samples (red points) to push the holes under plane.

(a) (b) (c) (d) (e)

Fig. 8. A sequence of user sketching and editing and the predicted surfaces.
(a) the contour only and its surface. (b) five inner strokes are drawn. (c) the
inner strokes are given curvature hints that have negative signs. (d) the
inner strokes are replaced with sharp features. (e) an inner depth sample
(red point) is placed at the center and pulls the region flat.

adapted. The penalty of Laplacian deviation is to keep the predicted
shapes as much as possible. We use ω0 = 0.1,ω1 = 100,ω2 = 0.1
to achieve a smooth adaptation process that preserves the critical
surface variations.
The optimization problem is solved for 4 iterations; in each iter-

ation, the point correspondences are updated and the linear least
square problem is solved with an iterative Conjugate Gradient solver
for 100 iterations. Fig. 6 shows an example of tightly fused patches.
Note this fusion process can be largely accelerated if we use as
variables a proper subset of the dense pixels which contain a lot of
redundancy. This can be achieved through down-sampling, which
we leave for future work.

Finally, a surface mesh is extracted from the fused point set by
Screened Poisson Reconstruction [Kazhdan and Hoppe 2013], to
which we pass along the adapted points and their normal vectors
updated based on new positions.

5 RESULTS AND DISCUSSION

5.1 Results
To model a target freeform shape that is category-free and could be
abstract, the interactive sketching process is generally quite intuitive:
the user incrementally explores and draws to add more details and
even surface patches in new views. Fig. 7 shows how to sketch a
simple abstract bumpy plane by adding bumps and holes to a base
plane. Fig. 8 shows the modeling of various stars through a sequence
of elementary user inputs and edits, where the predicted surfaces
respond to the strokes, curvature hints, sharp features and depth
sample accordingly. More results can be found in Figs. 1, 2, 13, 15.
The accompanying video shows real time modeling using our tool.

Surface patches are constructed by triangulating the pixel grids,
and are lifted to predicted depth values and rendered with predicted
normal vectors. For single surface modeling, the contour curve
is by default provided with depth samples in the drawing plane
unless otherwise specified. Re-sketched contour curves are marked
in red; inner depth samples if any are also shown as red points.
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Fig. 9. Sample confidence maps and their sketches. The simple sketch for
music note, the strokes with curvature hints (purple) for ice cream, and the
depth sample (red point) for the curvy plate all lead to less ambiguity and
brighter confidence maps. In contrast, over-sketched and cluttered local
details as in fish and sharp features (purple) with unknown normal jump for
the pyramid have more ambiguity and darker confidence maps. The result
3D shapes are shown in Figs. 1, 11, 15.

Strokes specified as sharp features or with target curvature values
are marked in purple.
To better understand the behavior of robust data fitting loss,

we visualize the confidence maps for representative examples with
more or less ambiguous sketches (Fig. 9). As wewould expect, simple
sketches or the use of depth cues and curvature hints lead to low
ambiguity and boost predicted confidence values. On the other hand,
over-sketched and complex strokes that are relatively cluttered, and
sharp features across which there is undetermined surface normal
jump, can be more ambiguous and lower the confidence values.

Runtime. Single view surface prediction by a CNN forward pass is
instantaneous (around 42ms), which allows for interactive feedback
and smooth sketching exploration. Multiple view fusion when used
is relatively slow due to the large number of variables for all valid
pixels, but takes less than 10 seconds even for as many as five surface
patches. Poisson reconstruction generally takes less than 3 seconds
to extract a surface mesh from a point set. The timing is reported
on a desktop PC with Intel Xeon 2.0GHz CPU and Nvidia GeForce
GTX 980 GPU.

5.2 Comparison
Non-learning based methods. For many classical methods like

[Igarashi et al. 1999; Nealen et al. 2007], the modeling process is an
interactive and incremental session, where each single stroke defines
a new boundary or feature curve in 3D that modifies the current
base shape, by solving a predefined geometric smoothness prior like
biharmonic equations. In comparison, for each view, our approach
takes a 2D sketch as input and generates in one pass a detailed 3D
shape that follows learned geometric priors. On one hand, such a
difference in modeling paradigm makes our approach a complement
to the previous methods as it can be used for efficient surface patch
modeling by sketching in a single view. On the other hand, the
learned geometric priors can be more reasonable than hand-crafted
rules. In Fig. 10, we see that to model a bottle shape, with our
method the 2D sketch is directly converted into a 3D surface (d),
while for biharmonic surfaces, with boundary position and normal
constraints, the result shape loses key features we want (b), and is
overly rounded even when additional inner curve constraints are
provided (c).

(a) (b) (c) (d)

Fig. 10. Comparison with biharmonic surfaces. (a) the input sketch of a
bottle shape. Red part of the contour is re-sketched to a half circle. (d) our
predicted result. (b) using the boundary position and normal constraints
taken from (d), the computed biharmonic surface cannot preserve key fea-
tures of the bottle shape. (c) even if we further constrain the biharmonic
surface with lifted spatial strokes (black curves) taken from (d), it is overly
rounded and loses the desired characteristics.

Fig. 11. Comparison with BendSketch [Li et al. 2017]. We recreate shapes
(right) similar to those from their paper (left). While their method requires
detailed annotations about the types of many more strokes (ridge, valley,
curvature line, sharp feature, etc., shown through color) and tuning stroke
curvature magnitudes (shown through line width), our method uses much
more succinct and natural gray scale sketch, with few additional specifica-
tions like depth sample (red point) or sharp features (marked in purple). For
our hand model, the red contour is re-sketched to be slightly off plane.

BendSketch [Li et al. 2017] reconstructs freeform surfaces with
complex curvature variation patterns from a 2D sketch, but the
type and meaning of each stroke must be specified by user as input,
so that the predefined geometric rules can be applied properly. In
comparison, thanks to our data-driven approach, our method parses
a user’s freehand sketching with more succinct strokes and very few
annotations. Examples are shown in Fig. 11, where similar surface
patches are created by both methods with very different sketches.

Learning based method. As reviewed in Sec. 2, most existing
learning based methods model category-specific shapes, while our
method targets generic freeform shapes. Still, here we compare with
the multi-view decoder approach [Lun et al. 2017] which outputs
intermediate depth and normal maps of predefined views to be fused
into 3D shapes, on modeling one of their shape categories, charac-
ters, to demonstrate the impact of different network structures on
result quality.

To make meaningful comparison, on the characters dataset pub-
lished by [Lun et al. 2017], we use sketches in the front view as
the only input. For their multi-view decoder network, the input
is front view sketch image, and the output are thirteen depth and
normal maps for views of the same number, which consist of one
frontal view and twelve regularly sampled spherical views around
the object. Their network is trained to minimize a data fitting loss
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Fig. 12. Comparison with the multi-view decoder network [Lun et al. 2017], both networks trained and tested on the characters dataset. The input sketch for
each test case is shown on the upper left, with ground truth front view depth map shown on the upper right. The multi-view fused complete 3D shapes by
[Lun et al. 2017] are shown on the lower left in green, while our predicted front view surface refined by post-regularization are shown in blue on the lower
right. Although our results are not complete 3D models, they capture more critical details intended by the sketches.

and an adversarial loss that captures category-specific properties.
We remove the mask regression objective from their network for
uniformity. For our network, the input front view sketch first goes
through the stage-one flow field regression network, and then the
sketch and flow field map together go through the stage-two geom-
etry network to output depth and normal maps for the front view.
Noticing that many of the 3D models in the dataset are low-poly
shapes which lack smoothness, we relax the regularity weight to
λ = 0.01 (Sec. 3.3) for training our network; since there is no stroke
type data in the training set, we use a conservative signal filtering
mask {αi } that is zero for all stroke pixels and background. Ground
truth curvature direction fields are generated using the depth maps
in training data. We replace our basic UNet component with the
smaller encoder-decoder structure used in their network, which
suits the small dataset with 10k samples; as a result, our network is
more than two times smaller than theirs. All networks are trained
for 10 epochs to convergence.
Since in [Lun et al. 2017] the predicted depth and normal maps

for multiple views are fused with a post-processing procedure that
consists of regularization, Poisson reconstruction, and detail en-
hancement, to make a fair comparison, following [Nehab et al. 2005],
we apply to our results a simple regularization that refines depth
maps for more consistency with normal maps, which in training
is relaxed as discussed above. The two networks are evaluated on
the test dataset to produce full 3D shapes and front-view surfaces
respectively. We compute the data fitting errors from the front view
ground truth depth maps: to compare two depth maps, we first align
them by translation so that they have common mean value, and
then compute their absolute difference averaged by pixel numbers;
for the fused 3D shapes which may have a different front-view sil-
houette than ground truth, we simply omit non-matching pixels
from error counting. The angular errors between normal vectors of
reconstructed surfaces and ground truth are also computed.
The depth/normal errors for their results are 0.0294/22.4◦, and

0.0332/18.6◦ for ours. Visual results (Fig. 12) show our network
predicts shapes that better capture important details conveyed by
the input sketch. It demonstrates that our two-stage network with
ambiguity estimation is beneficial even for category-specific recon-
struction from sketches.

Fig. 13. Sketches of various styles drawn by the users to model target
shapes in the evaluation test. Red contours are re-sketched to lift the teddy
limbs or to bend the dolphin body. Bird shapes are made by one front
sketch and completed by a symmetric back surface. Teddies are made by
surfaces for front and back sketches. Dolphins are sketched in three views;
the triangular sketches model the top fins. On average, the novice users
without background in drawing or modeling made the bird, teddy and
dolphin shapes in less than 5, 15 and 20 minutes respectively.

5.3 User evaluation
We invited five novice users with little knowledge or training about
sketching and 3D modeling to evaluate our tool. We first introduce
to the participants the background of how line sketches depict 3D
shapes, and then show them how our tool works by sketching simple
examples, to make them familiar with user interface. The training
takes 20 minutes for each person. Then in the evaluation test, the
users are asked to do three modeling tasks where they create three
target shapes of different complexity. The target shapes, i.e. bird,
teddy and dolphin, are given by reference images or 3D models
rendered in another program.

Example sketches and 3D shapes created by the participants are
shown in Fig. 13; more user creations and evaluations are in the
supplemental material. The users sketch in different styles which
appear natural to them. They managed to create interesting shapes
in 5 minutes, 15 minutes, and 20 minutes for bird, teddy, and dolphin
respectively. The bird models are all drawn in a single view, and
made complete by a symmetric reflection of the front surface. The
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teddy models are drawn in front and back views, where the front
surface contour is copied to the back for assistance. The dolphin
models are drawn in top, bottom and side views; the side view only
contains a triangular sketch modeling the top fin which is fused
with the other two patches to complete the shape.

Feedback from the participants is mostly positive. After 20 mins
training, users find the sketches easy to perceive for depicting the
shapes. After they have learned to use the tool, they like to take
their time and explore variations. Moreover, the users find sketching
in multiple views to make complete shapes easy to use.

5.4 Ablation study
To further test the impact of our network structure, we have done
three additional experiments for alternative structures:

(1) A straightforward regression of depth and normal data from
input sketches and depth samples, with loss function Edn =

1∑
m′
i

∑
im

′
i

(
0.76 × (di − d0i )

2 + ∥ni − n0i ∥
2
)
. The coefficient

0.76 for depth fitting term is derived from the range of depth
difference [0, 2.6] and the norm range of normal vector dif-
ference [0, 2].

(2) A modified regression with losses measuring shape regularity
and depth sample constraints, i.e. Edn + βEsample + λEr eд .

(3) A further modified regression with confidence map and the
loss function Etotal , but without the first stage network or
intermediate flow field.

These networks have the same structure as GeomNet, i.e. a five-level
encoder-decoder with separate decoders for different outputs. They
are trained on the same dataset as presented before for 10 epochs
to convergence (Sec. 3.4).
The trained networks are evaluated on the test dataset. Repre-

sentative visual results are shown in Fig. 14. Average test errors
are reported in Table. 1, where again the depth error is computed
after we align the predicted and ground truth depth maps so that
they have common mean value. The normal errors are angles in
degrees measured between normal vectors derived from the depth
maps and ground truth. In addition to the above configurations
of networks, we apply Laplacian smoothing [Desbrun et al. 1999]
(λ = 1, 5 iterations) to the predicted results of (1), to check if this
simple post-processing can improve result quality.
The results for all configurations match what we expected. The

naive fitting network (1) produces results with small errors in depth
but large errors in normal, which visually translates into the globally
irregular and locally noisy surfaces (Fig. 14). Laplacian smoothing
may reduce noise but does not improve the overall shape. With
the additional objective of depth/normal consistency, (2) has much
reduced normal error but increased depth error than (1); visually
the result shapes are locally smoothed but overall distorted. Regres-
sion with confidence map modeling ambiguity (3) not only greatly
improves surface regularity but also has lower errors in both depth
and normal than (2). Still the full network with flow field guidance
has depth error almost equal to naive predictions, but much smaller
normal error. Visually, as shown in Fig. 14, the result surfaces by full
network are more regular with rich variations faithfully capturing
sketch intentions. In addition, while all networks produce better re-
sults when given more depth cues, the full network is most resilient

Table 1. Average test errors for comparing networks. (1) is a naive regression
of depth and normal. (1) smoothed applies Laplacian smoothing to the
results of (1). (2) augments (1) with regular and depth constraints in loss
function. (3) uses the same loss function as ours with confidence map. Full
is the complete two-stage network.

Network (1) (1) smoothed (2) (3) full
Depth (×10−2) 2.14 2.19 2.36 2.24 2.18

Normal (degrees) 11.59 11.70 9.86 9.24 9.07

to the lack of depth cues, which we argue is due to the dense flow
field regulating the surface prediction.

6 CONCLUSION
In this paper we presented a sketch-based freeform surface model-
ing method that uses a CNN model to infer from sparse 2D sketches
depth and normal maps representing the surfaces. Compared with
traditional methods, the new learning based approach enables di-
rect inference from 2D sketches with more succinct lines and much
fewer user annotations. Different from existing learning-basedmeth-
ods which resolve the 2D-to-3D ambiguity by modeling category-
specific shapes only, our approach targets generic freeform shapes
and handles the ambiguity by using basic geometric and statistical
rules realized in our novel network structure.
Our network has two stages: in the first stage, the network re-

gresses a dense flow field from sketch which regularizes subsequent
geometry reconstruction; in the second stage, given the input sketch
and flow field, the network predicts depth and normal maps, along
with a confidence map that quantifies the amount of ambiguity on
each point, which is trained unsupervised and makes the geometry
regression more robust. Our network also allows user modification
of a surface by providing depth sample points, sharp features and
curvature hints. To train the network, we have generated a dataset
through NPR rendering and closely mimicking how users would
actually draw sketches to depict 3D shapes. Finally, multiple view
sketching provides convenient tools like contour re-sketching, and
enables the modeling of complete 3D shapes by fusing surfaces for
different parts of an object.
We have made validations, comparisons, user evaluations and

ablation tests, which show that the proposed approach is a new
way for modeling diverse freeform shapes by drawing intuitive and
expressive sparse 2D sketches.

Limitations and future work. Our approach models a surface patch
at each time, which is a paradigm unsuitable for highly structured
and symmetric shapes like CAD models, which can be more conve-
niently defined by sketching complete and regular wireframes.

We used a drawing canvas of fixed resolution 256×256. For com-
plex shapes, it is natural to model different level-of-details in mul-
tiple resolutions. We would like to extend our method and user
interface to implement such a multi-scale framework for modeling
both the overall shape and fine details flexibly.

In this work, we have considered sketches that have sparse lines
as input. However, dense strokes depicting shading cues are also
widely used by artists to enhance the 3D perception. In the future,
we want to handle these sketching styles for 3D modeling as well.

Tackling ambiguity is a pervasive issue in data-driven and ma-
chine learning tasks, where we believe the application of robust
estimator can be generally helpful.
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sketch w/o
depth cue

(1) (1) smoothed (2) (3) Full

sketch w/
depth cue

(1) (1) smoothed (2) (3) Full
Fig. 14. Predicted surfaces by different networks for ablation test. Left columns show results for input sketches without any depth samples, right columns with
depth samples (marked in red) along portions of the contour curves. The sketches are rendered from existing test models. (1) is the naive regression of depth
and normal. (1) smoothed applies Laplacian smoothing to network predictions. (2) augments (1) with regularity and depth sample constraints in loss function.
(3) further uses the robust data fitting with confidence map. Full network has the complete two-stage structure. (1) produces very noisy results, which are still
distorted after Laplacian smoothing. (2) reduces noise, but the overall shapes are distorted. (3) predicts more regular surfaces. But the full network further
improves regularity, and has richer surface variations capturing the meaning of input strokes faithfully (e.g. see head of top bear). All networks perform better
when given depth cues, but the full network is most resilient to the lack of depth samples.

Fig. 15. More sketches and corresponding shapes. Red contours are re-sketched to provide additional boundary depth data. Inner depth samples (red points)
are used for the torso back and owl face. Sharp features (purple) are used in pyramid, penguin, owl face. Curvature hints are used for ice cream. Dolphin fin,
duck wing, and owl nose are modeled by small triangle patches in their own views and then fused with the other parts. Penguin and pyramid are single
patches; the rest are complete shapes.
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