
JOURNAL OF LATEX CLASS FILES, VOL. *, NO. *, DEC 2021 1

Marching Windows: Scalable Mesh Generation
for Volumetric Data with Multiple Materials

Wenhua Zhang, Yating Yue, Hao Pan, Zhonggui Chen, Chuan Wang,
Hanspeter Pfister, Senior Member, IEEE, and Wenping Wang Fellow, IEEE

Abstract—Volumetric data abounds in medical imaging and other fields. With the improved imaging quality and the increased
resolution, volumetric datasets are getting so large that the existing tools have become inadequate for processing and analyzing the
data. Here we consider the problem of computing tetrahedral meshes to represent large volumetric datasets with labeled multiple
materials, which are often encountered in medical imaging or microscopy optical slice tomography. Such tetrahedral meshes are a
more compact and expressive geometric representation so are in demand for efficient visualization and simulation of the data, which
are impossible if the original large volumetric data are used directly due to the large memory requirement. Existing methods for
meshing volumetric data are not scalable for handling large datasets due to their sheer demand on excessively large run-time memory
or failure to produce a tet-mesh that preserves the multi-material structure of the original volumetric data. In this paper we propose a
novel approach, called Marching Windows, that uses a moving window and a disk-swap strategy to reduce the run-time memory
footprint, devise a new scheme that guarantees to preserve the topological structure of the original dataset, and adopt an error-guided
optimization technique to improve both geometric approximation error and mesh quality. Extensive experiments show that our method
is capable of processing very large volumetric datasets beyond the capability of the existing methods and producing tetrahedral
meshes of high quality.

Index Terms—large volumetric data, multiple material, marching windows, mesh simplification, topology guarantee.

✦

1 INTRODUCTION

Precise 3D imaging, such as CT, MRI, or electron mi-
croscopy, is increasingly used in medicine, science, and
engineering, producing extremely large 3D high-resolution
volumetric data that contain multiple materials with rich
delicate structural details. For example, Fig. 1 shows a 3D
image of dimension 1024×1024×100 with 400 distinct ma-
terial labels, and this is just a small part of an EM (Electron
Microscopy) scanned connectome data set. The sheer large
size of such data in the voxel format precludes efficient
visualization analysis and simulation of such 3D image
data. In this paper, we address this challenge by developing
a pipeline for converting large-scale volumetric data into
a compact tetrahedral mesh that preserves the structural
detail of the data, which would facilitate the visualization,
analysis, and simulation of large-scale volumetric data.

Meshing a large volumetric data set is a challenging
problem. For example, directly triangulating the volumet-
ric data in Fig. 1 into a tetrahedral mesh by connecting

• W. Zhang, Y. Yue, and C. Wang are with the Department of Com-
puter Science, The University of Hong Kong, Hong Kong SAR,
China. E-mail: winniezhangcoding@gmail.com, ytyue@cs.hku.hk, and
cwang.hku@gmail.com

• H. Pan is with Microsoft Research Asia, Beijing, China. E-mail:
haopan@microsoft.com

• Z. Chen is with the School of Informatics, Xiamen University, Xiamen,
China. E-mail: chenzhonggui@xmu.edu.cn

• H. Pfister is with the John A. Paulson School of Engineering and
Applied Sciences, Harvard University, Cambridge, MA, USA. E-mail:
pfister@g.harvard.edu

• W. Wang is with the Department of Visualization, Texas A&M Univer-
sity, Texas, USA. E-mail: wenping@tamu.edu

neighboring vertices would require around 420 GB of mem-
ory, making it impossible to load the mesh into memory
for visualization or simulation. Therefore, when meshing
volumetric data, it is imperative to produce a compact
mesh representation that is storage-efficient and to minimize
memory footprints during computation so that the mesh
can be computed on a common computing platform. In
addition, large-scale volumetric data, especially those in
medical imaging, contain numerous complex regions of dif-
ferent materials, such as axons and dendrites. These intricate
and non-manifold features form a complex topology that
is critical in imaging analysis. Hence, generating compact
tetrahedral meshes from such imaging data, which can
be viewed as a simplification procedure, must accurately
represent the boundary surfaces of different regions and
faithfully preserve the topological features of these regions.

To recap, the problem of computing a tetrahedral mesh
to represent a large-scale volumetric imaging data set with
labelled multiple materials needs to meet the following
requirements:

1) Mesh size: the output tet-mesh should be compact so
can be used readily for visualization, analysis, and
simulation;

2) Memory footprint: given the large size of the volumetric
data, the algorithm needs to be memory-friendly, using
a sufficiently small memory foot-print that so it can run
on a general computer;

3) Structure preservation: the output mesh needs to pre-
serve the structure of the regions of multiple materials
contained in the original volumetric data;

4) Boundary approximation: the mesh needs to accurately

JOURNAL OF LATEX CLASS FILES, VOL. *, NO. *, DEC 2021 2

(a) (b)

Fig. 1. (a) A part of 3D volumetric connectome data containing 400 re-
gions of distinct material. The data has the resolution 1024×1024×400.
(b) One 2D slice of the imaging data in (a) of resolution 1024×1024,
revealing numerous details and features. A slender feature is shown in
red. Some feature lines and points are shown in close-up.

approximate the boundary surfaces of different regions;
5) Mesh quality: the quality of the tet-mesh elements needs

to be as high as possible, as required for accurate and
robust simulation.

We propose a memory-efficient and scalable method,
called Marching Windows, for converting large-scale volu-
metric data with numerous regions of multiple materials
into a compact, feature-preserving, and high-quality tetrahe-
dral mesh. By compact, we mean that our generated meshes
are much coarser than the original mesh, with usually less
than 1% of vertices. Our result meshes are tet-meshes which
are composed of tetrahedra that only intersect at bound-
ary elements of lower dimensions (vertices, edges, triangle
faces). They are commonly used by offering a good compro-
mise between simplicity of mesh generation, generality, the
ability to conform to complex geometries and numerics [1].

Marching Windows does not need to load the entire
volumetric data into memory for processing. Instead, it
uses a marching window for local mesh generation and a
disk-swap scheme for I/O management. As a result, it is
capable of processing arbitrarily large volumetric data while
requiring only a moderate amount of runtime memory. For
example, for the dataset shown in Fig. 1, Marching Windows
converts it into a high-quality tet mesh using only 1.2
GB runtime memory, with a window of size 40×40×40.
Marching Windows is also topologically faithful and geo-
metrically accurate. The connectivity within a region of the
same material and the boundary surfaces between different
regions are guaranteed to be preserved (see Figs. 16, 17, 18,
and 19). Furthermore, Marching Windows produces high-
quality mesh elements (see Sec. 6 for comparison).

The Marching Windows method is enabled by the follow-
ing key design considerations. Firstly, we use a marching
window for local mesh generation and a disk-swap scheme
to accommodate large-scale volumetric data. As shown in
Fig. 2, we sequentially process fixed-size data bounded in
the marching window without compromising the quality
of generated meshes. To this end, we designed a specific
marching strategy that moves the window by half the win-
dow size and fixes the vertices on the boundary at each
step. In addition, as the working window proceeds, we
swap out the inactive data to the disk of external storage

and swap in new active data to memory. In comparison, as
will be reviewed in Sec. 2, existing direct mesh generation
methods generally have to load the entire dataset at once, so
would be limited by the available computational resources.
In addition, the naive method of cutting the data into small
blocks and processing one block at a time would lead to
degraded mesh quality due to the arbitrary boundary cut.

Secondly, we reduce the size of the initial dense mesh
induced by the voxel grid through iterative edge contraction
and introduce effective criteria to ensure topology correct-
ness. In comparison, the widely used Delaunay refinement
methods [2], [3], [4] for quality mesh generation have diffi-
culty in preserving intricate topology and geometric details
(see Fig. 17, 18, and 19). Similar issues arise for particle-
based mesh generation [5], which samples more densely at
feature regions to reduce topological and geometric errors
but without guarantees.

Finally, the Marching Windows algorithm generates high-
quality tetrahedral meshes by selectively contracting edges
to improve mesh quality. The simplification is also con-
strained by density variation (Sec. 5.4) to achieve smooth
gradation of mesh elements. After simplification, we fur-
ther apply the constrained Optimal Delaunay Triangulation
(CODT) with constrained boundary faces for several itera-
tions to improve mesh quality [6], [7], [8], [9]. As a result, the
resulting mesh quality is comparable to more sophisticated
meshing methods where they are applicable (Sec. 6.3).

In summary, Marching Windows is the first mesh-
generation method that handles very large volumetric
datasets with multiple labeled materials. It runs on modest
and easily accessible computational resources, and produces
high-quality meshes that preserve the connectivity topology
and accurately approximate the boundary surfaces of the
input volumetric data. Data and Code for Marching Windows
will be available at the project webpage1.

2 RELATED WORK

There are many works on generating 3D tetrahedral meshes
from volumetric data; here we review those most relevant
to our problem: meshing volumetric data with multiple
materials. According to the general methodology taken,
we broadly divide the related works into three categories,
i.e., Delaunay-based methods, variational methods, lattice-
based methods, and mesh simplification methods.

2.1 Delaunay-based Methods
Delaunay refinement [2], [3], [4] is able to generate high-
quality meshes via repeatedly inserting points and build-
ing Delaunay triangulation after each insertion. For multi-
material data, it demands extra effort to preserve the feature
lines and surfaces between different materials. Conforming
or constrained Delaunay refinement are generally used to
handle the feature constraints [10], [11], [12], [13], [14], [15],
which require the specification of feature lines as input. [16],
[17] use protective balls around the features edges during
the refinement process. However, small features like isolated
voxels do not have feature lines and can be missed by
refinement.

1. https://w-h-zhang.github.io/projects/marching windows/mw.html

https://w-h-zhang.github.io/projects/marching_windows/mw.html

JOURNAL OF LATEX CLASS FILES, VOL. *, NO. *, DEC 2021 3
Version 0.7

One marching window
in labeled image series

Initial mesh Simplified mesh Optimized mesh
Move to next window

Simplify CODT

Fig. 2. Overview of the pipeline. Following the marching windows approach (Sec. 4), inside each window, (a) we first generate an initial mesh from
the bounded input image stack (Sec. 5.1), (b) then simplify it to reduce data size and produce a quality mesh with geometric fidelity (Sec. 5.2, 5.3,
and 5.4), and (c) apply CODT iterations to further improve the mesh quality (Sec. 5.5). Both simplification and CODT optimization are guaranteed
to preserve material subdomain topology. We show cut-off views of the tetrahedral meshes to better illustrate the mesh improvements.

In contrast, our simplification-based approach always
preserves the features and surfaces between materials by
topology filtering, ensuring topology correctness and keep-
ing geometric fidelity while promoting mesh quality during
simplification.

2.2 Variational Methods

Starting from an initial triangulation, variational methods
optimize the triangulation by moving vertices and updating
the connectivity of vertices, guided by minimizing objective
functions that measure the mesh quality and constrained by
necessary boundary conditions. Many geometric measures
have been proposed for objective functions [18]. Among
them, the methods based on centroidal Voronoi tessella-
tion [19], [20] and optimal Delaunay triangulation (ODT) [6],
[7], [8], [9] have been proved effective for generating meshes
of higher quality than other methods. The problem with
these methods is that the collective vertex and connection
update are non-local and therefore computationally expen-
sive, which would be unacceptable for large-scale data. We
also use the effective ODT method to improve mesh quality,
but only after the mesh is simplified significantly. Only a few
iterations of ODT applied to the coarse mesh of reasonably
good quality are sufficient to give us a final mesh of high
quality.

While most variational methods mesh a single material
homogeneous volume, Meyer et al. [5] focus on multi-
material meshing. They use a variational particle-based
method to first generate a good meshing of the surfaces
between materials and then construct a tetrahedral mesh
within each material region using constrained Delaunay
refinement. To properly sample the surfaces with an appro-
priate number of particles, they rely on a sizing field defined
by local feature size [21] which involves the computation
of the medial axis of the material regions. Computing the
medial axis is a non-local process that not only takes much
time but also requires loading a complete material region
at once, which is computationally infeasible for very large-
scale data sets. Also, [5] uses pre-processing to remove
very thin regions of the data so that the particle-based
optimization could work properly. However, this alters the
geometric details and topology of the input data, which
is critical for downstream tasks like medical analysis. In

comparison, our method requires no such complex pre-
processing, ensures correct topology, preserves geometric
details, and can process datasets of a very large scale.

2.3 Lattice-based Methods
Bronson et al. [1] describe a meshing algorithm for gener-
ating tetrahedral meshes for multi-material domains. They
rely on a regular background lattice that is subdivided (or
cleaved) to conform to the material boundaries. The out-
put meshes approximately conform to interfaces between
materials and have high-quality tetrahedral elements with
guaranteed fidelity to sufficiently large features. However,
it could not deal with large-scale datasets like Mito, as it
needs to compute on the whole mesh but loading the large
datasets entirely into memory is hardly feasible.

2.4 Mesh Simplification Methods
Mesh simplification methods usually start with a dense
mesh and gradually remove vertices from the mesh ac-
cording to certain criteria. Therefore, it is suitable to use
simplification in our solution, while we design novel criteria
to preserve the complicated details and features in the final
coarse mesh.

Many simplification algorithms [22], [23], [24], [25] have
been developed for simplifying triangular surface meshes.
The basic ideas of tetrahedral mesh simplification are sim-
ilar [26], [27], [28], [29], [30]; these works can be divided
into several categories: vertex clustering, vertex decima-
tion, and edge contraction. The quadric error metric (QEM)
method [24] is the most prevailing algorithm in this category
due to its simplicity and superior efficiency. Over the years,
numerous works have improved and extended QEM [31],
[32], [33], [34], [35], [36]. Our approach is based on edge
contraction with a customized error metric similar to QEM
to achieve the goal of generating high-fidelity surfaces and
high-quality mesh elements simultaneously; see Sec. 5 for
details.

Moore et. al [37] present a simplification-based method
to reconstruct surface models from multi-material volumet-
ric data. To compare, our method generates tetrahedral
meshes that contain surface models, and achieves high mesh
quality and topology correctness in a simpler manner. For
example, [37] adds quality control to QEM through a scale-
invariant quality metric, to evaluate the triangle quality

JOURNAL OF LATEX CLASS FILES, VOL. *, NO. *, DEC 2021 4

according to the area and edge length. However, the tra-
ditional QEM cannot simplify flat surfaces since costs there
are always zero. Therefore, [37] perturbs planes specifically
by adding small random noise. In contrast, our error metric
combines QEM with an extended error matrix (Sec. 5.2) that
measures element quality, so we can simplify flat surfaces
and volume consistently and obtain quality results.

Faraj et al. [38] solve the remeshing of multi-material
tetrahedral meshes by iterative applications of local op-
erations, including edge split/collapse, face flipping, and
vertex smoothing, that are adapted to preserve the material
subdomains. While their overall paradigm shares similar-
ity with our simplification-based approach, we focus on
processing large-scale data that is challenging for their
remesher [38] but handled with ease by our Marching Win-
dows approach (Table 2). Moreover, we note that their topo-
logical filtering is more restricted than our criteria (Fig. 9).

Vivodtzev et. al [39] also aim to simplify the tetrahedral
meshes while preserving the feature substructure topology.
They extend link conditions [40] to multiple-material feature
complexes to check if an edge can be collapsed without
changing feature topology. The correctness of the extended
link conditions for multi-material simplification is proved
in [41]. However, similar to MAD [38], the conditions are
sufficient for preserving the volume topology but not nec-
essary, as they are designed to focus on keeping the topol-
ogy of the embedded surfaces instead of the subdomains
volumes. For example, as shown in Fig. 9, the edge v0v1is
not collapsible with their method2, while it can be handled
properly with our algorithm.

2.5 Distributed Mesh Generation
Distributed mesh generation methods [42], [43], [44], [45]
aim to generate large-size meshes with distributed and
parallel computational resources. They usually start with
an initial coarse mesh and then decompose the geometry
into multiple sub-geometries, the meshing of which are
dispatched to multiple computational units. Thus, these
works are often more focused on mesh partitioning, load
balancing, and partition boundary mesh face matching. Our
method avoids these challenges by processing the data
sequentially with our memory-disk swapping scheme. Be-
sides, it is difficult for these methods to generate coarse
meshes first with very large-scale and complex data like
Mito [46], while our method does not build an initial coarse
mesh and can easily process large datasets sequentially.

3 OVERVIEW

Fig. 2 shows the pipeline of our fast mesh generation algo-
rithm for large-scale multi-material volumetric data. Given
a volumetric input data consisting of a series of 2D sections,
our algorithm adopts marching windows to process the data
blocks sequentially (Sec. 4). Within each window, the mesh
generation consists of three steps:

1) generate an initial tetrahedral mesh by subdividing the
input voxels (Sec. 5.1);

2. Precisely, Lk0v0 ∩ Lk0v1 ̸= Lk0v0v1 due to the existence of the
bottom right vertex v3 in Fig. 9(a).

Boundary of current window

Boundary of last window

Current window

Other data

step

t0

t1

t2

(a)
· · ·

step

t0

t1

(b)

x
y

z

(c) (d) (e)

Fig. 3. Window marching strategy illustration. (a) 2D illustration of the
window marching steps, with (b) mesh generation in each window. (c)
When moving one step along the x axis in 3D, the marching boundary
of the x axis will be included in the new window and simplified. (d) The
window moves along y axis when it reaches the end of x axis. (e) The
window moves along z axis when it reaches the end of y axis.

2) simplify the mesh while capturing both the labeled
volumetric regions and the surfaces between them with
topology guarantee, quality control, and density varia-
tion (Sec. 5.2, 5.3, and 5.4);

3) further improve the quality of the simplified tetrahe-
dron mesh with constrained ODT iterations (Sec. 5.5).

Section 4 focuses on the window marching strategy and the
memory-storage swapping method, while Section 5 presents
our mesh simplification and optimization algorithms within
each window. We comprehensively evaluate the proposed
method in Section 6 and conclude the paper in Section 7.

4 SCALABLE PROCESSING BY Marching Win-
dows
Traditional algorithms usually require data to be entirely
loaded into memory before processing, which becomes im-
practical when handling very large-scale data (see Fig. 1 and
Table 1). Therefore, we adopt a marching windows strategy to
solve this challenge: we locally generate a small part of the
mesh at a time; as the window ranges over the entire data
volume, a compact mesh is generated while the memory
cost is upper-bounded by the size of the window. To ensure
that the generated meshes within different windows are
consistent, the marching process overlaps windows with
special care; to swap in and out the data blocks for memory
saving, we use on-demand data management. We present
the details of the process next.

4.1 Window Marching Strategy

Assuming that the volumetric data has an axis-aligned box
shape in 3D space, the marching windows move along the
x, y, z axes sequentially, advancing for half of the window’s
side length for the corresponding axis at each step. For
example, for a volume data of size X×Y×Z and a window

JOURNAL OF LATEX CLASS FILES, VOL. *, NO. *, DEC 2021 5

(a) (b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l) (m) (n) (o) (p)

Buffered data

in memory

Data load

from disk

Raw volume

data unprocessed
Data

Processing

Data swapped

out to disk

Raw volume data

load from disk

Fig. 4. Memory-disk data swapping. After processing in each window,
the program will swap out some of the data to the disk and swap in
new data to the memory accordingly. (a)-(h) The moving routes along
x, y, z axes, respectively. (i)-(p) The data source for each window. Note
that each window below corresponds to the processing window(in pink)
above respectively.

size W×H×D, where W,H,D are even numbers, there are
⌈ 2XW ⌉×⌈

2Y
H ⌉×⌈

2Z
D ⌉ steps in the process.

The meshing inside a window must be carried out in
such a manner that the elements are conforming across the
windows. To achieve this target, first, the newly included
voxels inside a window are subdivided into tetrahedra in
two alternating ways depending on the parity of the global
voxel index (see Fig. 5). We call the mesh inside the window
at step t as active mesh and denote it as Mt = (Vt,Σt),
where Σt = {σj = (vj1, vj2, vj3, vj4) ⊂ Vt} is the set of
tetrahedra intersected by the current window, and Vt is
the corresponding active vertex set. Then, we maintain a
set of boundary elements that are constrained during the
simplification and optimization of Mt, and only process
them when they become interior elements in later steps. To
be specific, the constrained elements are the tetrahedra in
Σt which are touched or crossed by the window boundaries
(excluding the data volume boundaries); the vertices of
these constrained tetrahedra are skipped by simplification
and optimization (Sec. 5), while the mesh is processed into
M ′

t = (V ′
t ⊂ Vt,Σ

′
t) and saved as a part of the final result.

Fig. 3 illustrates the moving routes of Marching Windows in
3D and the constrained boundary elements in 2D.

4.2 Memory-Disk Data Swapping
We limit memory usage during the process by a memory-
disk swapping method based on the smallest data manage-
ment unit, a data block of 1

8 size of the marching window,
as shown in Fig. 4. After the simplification procedure within
each window, we divide that window into eight data blocks.
The association of processed data blocks and their mesh
elements is maintained by a table mapping the blocks to
their contained tetrahedra. In particular, the data blocks are
identified by their global positions inside the whole data
volume. The mesh vertices are identified by their global
indices as voxel corners. Each tetrahedron is identified by
its four vertices stored into the entry of the data block that
intersects it.

After processing in each window, the processed data
blocks are either cached in memory if it appears in the next
window, or swapped out to disk to save memory. It will be
swapped into memory later if it becomes part of the active

(a) (b)

Fig. 5. Generating the initial mesh from the multiple labeled volumetric
data. (a)The input data with the constructed cubes (the top one) and the
input data with the constructed mesh (the bottom one). (b) Dividing a
cube into tetrahedra. The cubes are divided into 5 tetrahedra with two
different ways. Adjacent cubes use the methods in (b) respectively so
that the interfaces of cubes are consistent.

window again. We move to the next window by combining
the cached data and new data from the disk, where the new
data is either raw data or processed data, according to the
position of the active window. See Fig. 4 for an illustration
of the different memory-disk swapping scenarios.

With this swapping strategy, we are able to constrain
the memory usage of the program. Table 2 compares the
maximum memory usages of Marching Windows and of pro-
cessing the entire data set at once, and shows that memory
usage is drastically reduced by our method.

5 MESH GENERATION WITHIN A WINDOW

Within each window, we apply a fast mesh generation
process that produces high quality elements in one pass.
In particular, we adopt a mesh simplification plus optimiza-
tion method, with designs that guarantee the topology and
preserve the geometry of the multi-material subdomains.

5.1 Mesh Initialization
For each raw data block, we can construct a high-resolution
initial mesh to capture all the details present in the data. To
be specific, each voxel of the input volumetric data is sub-
divided into 5 tetrahedra, as shown in Fig. 5; two adjacent
cubes are subdivided in ways that are symmetric by reflec-
tion so that the interface between them is consistent. The
material of a tetrahedron is derived from its original voxel.
A triangle face is a surface separating two subdomains
if it is adjacent to two tetrahedra with different material
labels. Note that this simple mesh construction method is
favorable than traditional methods like Marching Cubes
[47] and Marching Tetrahedra [48], as they are nontrivial
to extend to multi-material data without possibly missing
detailed features.

The simplification-based method allows us to start with
a high-resolution initial tetrahedral mesh to obtain a more
compact mesh, while emphasizing the mesh quality and
preserving the topology and geometry of the material sub-
domains. To this end, we apply edge collapsing filters to
ensure the topology correctness of simplified mesh, and
utilize an extended error metric of the classic Quadratic

JOURNAL OF LATEX CLASS FILES, VOL. *, NO. *, DEC 2021 6

Error Minimization (QEM) method [24], [33] to preserve the
subdomain geometry. We also achieve smooth grading of
tetrahedra by target edge variance control.

To adapt the simplification process for complicated
multi-material data, we modulate the process to achieve the
following targets:

1) the topology of material subdomains should be strictly
preserved;

2) the shapes of subdomains described by their boundary
surfaces should be well preserved;

3) the mesh elements should be of high quality.

5.2 QEM Driven Simplification

The key issue of mesh simplification is to determine the
order of contracting the mesh edges. Following the QEM
framework, every vertex v is associated with a quadratic
form xTQvx, where the variable x = (x0, x1, x2, 1)

T ∈ R4

is a homogeneous coordinate vector, and Qv is a symmetric
4×4 matrix. In each iteration of the simplification, a set
of collapsible edges are filtered by structural validity con-
straints; the collapsible edges are then evaluated for geo-
metric errors, with the error metric of an edge vivj derived
from its two endpoints as minx x

T (Qi +Qj)x, where the
minimization has a closed form solution due to the positive
definiteness of Q; the minimum error edge e∗ = vpvq is
then collapsed by merging for example vq into vp, replacing
the references of vq to vp for the tetrahedra containing vq ,
updating vp as the optimal solution x∗ of the error metric,
and assigning Qp ← Qp +Qq for later error evaluation.

The QEM framework has been proposed with a variety
of quadratic errors, including the traditional error measur-
ing the sum of squared distances of a vertex to the planes of
its supporting triangles [24], and also a Euclidean distance
error measuring the sum of squared distances of a vertex
to the data points associated to the vertex [33]. In our
algorithm, we combine these two types of quadratic errors
to measure both the approximation to the interfaces and the
quality of mesh elements. To be specific, for a surface vertex
v we define the surface error quadratic form matrix as

Qs
v =

∑
∆j∼v

gjg
T
j , (1)

where ∆j is the j-th interface triangle neighboring v, and gj

is a 4-dimensional vector representing the triangle’s plane
equation coefficients, i.e., gT

j x = 0 is the plane equation
containing the triangle and the first three components of gj

form the unit normal vector of the plane. The element qual-
ity error term is defined as xTQd

vx = ∥x − ṽ∥2, with ṽ the
homogeneous coordinates of the vertex position; therefore,

Qd
v =

(
I −v
−vT ∥v∥2

)
, (2)

where I is the 3×3 identity matrix. The total quadratic error
matrix for a surface vertex (order > 1) is Qs

v+Qd
v ; an interior

vertex instead only has the element quality error term Qd
v .

5.3 Multi-Material Topology Preservation

The topology of each material subdomain is a fundamental
feature of the complex data sets, and should be preserved

𝑣9

𝑣4 𝑣5

𝑣3
𝑣6

𝑣0

𝑣1
𝑣2

𝑣7 𝑣8

Case 1

Case 2

Case 3.a

𝑣0

𝑣2
𝑣1𝑣4

𝑣7
𝑣6

𝑣8
𝑣9

𝑣3
𝑣5

(a)

Fig. 6. Illustration of simple cases filtered by our algorithm. Depicted is a
background material (blue box) containing an inner block as an isolated
region. We omit meshes of the background material for simplicity. (a)
Case 1: both vertices are inner vertices, e = v5v6; Case 2: one vertex is
inner vertex and the other one is boundary vertex, e = v6v8; Case 3.a:
order of the edge is smaller than both endpoint vertices e = v4v7.

strictly by meshing. However, unfiltered edge collapses
in the dense mesh simplification process may introduce
arbitrary topology changes. In this section, we present al-
gorithms to restrict feasible edge collapses and preserve
the subdomain topologies. In particular, similar to [38], we
classify the boundary elements and interior elements, and
filter out obvious violations of topology by type checking.
In addition, for complex scenarios around the boundary
regions that cannot be determined by type checking, we
further use the dual simplicial complex [49], [50] to track
and guarantee the topology preservation.

5.3.1 Element types
First, we define the order of a mesh element (vertex, edge,
face) as the number of distinct materials of its adjacent
tetrahedra. Based on the notion of order, we further define
the following types.

• Inner face, edge, and vertex have order 1.
• Boundary face: We define two kinds of boundary faces

here. Material boundary face is a face that is adjacent to
two tetrahedra of different labels and has order 2, e.g.
face v0v1v2 in Fig. 6. Volume boundary face is a face that
is on the boundary of the volume of the data, which
has order 1. We use the term boundary faces to denote
the union of the two kinds of faces in the following
description.

• Boundary edge is an edge of a boundary face, either
material boundary face or volume boundary face. A
boundary edge of a material boundary face has order
≥ 2, e.g., edge v0v1 in Fig. 6. While a boundary edge of
a volume boundary face could have order 1.

• Boundary vertex is an endpoint of a boundary edge. If
the boundary vertex is on a boundary edge of a material
boundary face, it has order ≥ 2, e.g. vertex v0 in Fig. 6.
Otherwise, it has the order of 1.

5.3.2 Dual graph
Following [49], [50], each primal tetrahedron has a dual
vertex, each primal face has a dual edge, each primal edge has

JOURNAL OF LATEX CLASS FILES, VOL. *, NO. *, DEC 2021 7

(a) (b)

(c) (d)
Fig. 7. Illustration of dual edges and faces. (a) The blue dotted line
illustrates the material-dual edge of the face. (b) The face surrounded
by the four blue dotted lines illustrates the material-dual face of the
edge. Here each blue dotted line represents a material-dual edge of the
corresponding face. (c) and (d) illustrate domain-dual edge and domain-
dual face, respectively.

a dual face, and each primal vertex has a dual polyhedron. To
handle multiple materials, here we define the material-dual
elements only for primal tetrahedra of the same material,
i.e., the dual vertices forming the dual edges and faces must
correspond to primal tetrahedra of the same label, as shown
in Fig. 7. Intuitively, the dual edges and faces ensure that a
primal tetrahedron is connected to other tetrahedra in the
subdomain, thus providing a measurement of subdomain
topology. Precisely for each subdomain, the nerve theorem
states that the dual graph is homotopy equivalent to the
primal tetrahedral mesh [49].

Additionally, to preserve domain boundary, we define
domain-dual edges and faces. For a primal face on the
boundary of the domain, it is assumed to have a domain-
dual edge, that connects the dual vertex of its only adjacent
tetrahedron with a virtual tetrahedron outside the domain
(Fig. 7(c)). Similarly, if all the tetrahedra around an edge on
the boundary are of the same material, we assume it has a
domain-dual face (Fig. 7(d)).

Both material-dual and domain-dual edges and faces are
used to restrict simplification from breaking the homotopy
of input data. Unless necessary, in the following discussions
we do not explicitly specify the two kinds of dual connec-
tions (material- and domain-).

5.3.3 Edge collapse filtering algorithm

Given an edge e = vpvq , we check whether collapsing it
will change subdomain topology by matching it with the
following cases:

• Case 1. If both vertices are inner vertices, the edge e is
able to collapse, as edge v5v6 in Fig. 6. The contraction
position is determined by QEM.

• Case 2. If one vertex is inner vertex and the other one is
boundary vertex, the edge e is able to collapse, e.g. edge
v6v8 in Fig. 6. The contraction position is the position
of the boundary vertex.

• Case 3. If both vertices are boundary ones:
– Case 3.a Check edge order: if it is smaller than both

vertex orders, the edge e is not able to collapse, e.g.
edge v4v7 in Fig. 6.

– Case 3.b Visit each tetrahedron σ∼e adjacent to e,
and check whether any dual connections (if exist)
through the two remaining faces of σ will be cut by
contraction; if cut off, the edge is not collapsible. If
no dual connection exists for the remaining faces of
every σ, the component is in isolation and the edge
is not collapsible. Otherwise, the edge can collapse.
See Fig. 8 for an illustration. The contraction position
will follow the vertex with higher order; if they have
equal orders, QEM determines the position.

We note that cases 1 and 2 are straightforward type checking
that specifies how the inner vertices can be collapsed and
snapped to boundary to preserve the boundary shape. Case
3.a intuitively allows for boundary vertex collapse only
when the edge is also a boundary, which prevents snapping
of two vertices on different boundary surfaces but allows
for the simplification of feature curves met by multiple
subdomains. Illustrations are given in Fig. 6.

The case 3.b is the most complex and uses the dual graph
to check for feasibility. However, at its center is the preser-
vation of the dual graph connection. While case 3.b gives
a conceptual description, we further present the computa-
tional details that implement the rule in Alg. 1. Note that in
the implementation we have checked that, if the subdomain
is isolated around the edge and would disappear due to
collapse, the edge would be skipped. In addition, to ensure
that subdomains in contact with data cube boundaries do
not lose their connection during simplification, we specially
mark the boundary faces as always having domain-dual
edges. This essentially guarantees that the connections on
the data volume boundary are preserved.

Theorem. The edge collapse filtering algorithm preserves subdo-
main topology in terms of homotopy equivalence.

Proof: Cases 1 and 2 do not change sub-domain topology
because of the existence of inner vertex. Case 3.a only pre-
vents edge collapse and does not change topology. Case 3.b
preserves dual connections by construction. According to
the nerve theorem [49], the dual connections are homotopy
equivalent to the primal local tetrahedral mesh. We there-
fore have the homotopy equivalence between tetrahedral
patches before and after the collapse, bridged by the dual
connections.

Remark 1. While the type checking is similar to [38],
by using the dual graph for topology measurement, we are
capable of dealing with cases where [38] fails to proceed,
e.g., the red edges in Fig. 9: as v0, v1 and v2 are boundary
vertices but the face v0v1v2 is an inner face, the edge v0v1
is prohibited to collapse by [38], while in our algorithm, we
find that the edge is not critical in sub-domain topology
preservation, because each adjacent tetrahedron has dual
connections that the collapse won’t destroy, so we allow it.

JOURNAL OF LATEX CLASS FILES, VOL. *, NO. *, DEC 2021 8

𝑣3𝑣3𝑣3

𝑣0

𝑣1𝑣5

𝑣4𝑣2

𝑣0

𝑣3
𝑣2 𝑣4

𝑣5

𝑣0

𝑣1

𝑣2 𝑣4

𝑣5

𝑣6 𝑣7

𝑣0

𝑣6
𝑣3 𝑣7

𝑣4

𝑣5

𝑣2

𝑣0

𝑣4

𝑣1

𝑣2

𝑣5

𝑣3

𝑣4𝑣0𝑣2

𝑣5

(a)

𝑣3𝑣3

𝑣0

𝑣1

𝑣2 𝑣4

𝑣5

𝑣0

𝑣3

𝑣4

𝑣5

𝑣2

𝑣0

𝑣4

𝑣1

𝑣2

𝑣5

𝑣3

𝑣4𝑣0𝑣2

𝑣5

(b)

𝑣3𝑣3

𝑣0

𝑣1

𝑣2 𝑣4

𝑣5

𝑣6 𝑣7

𝑣0

𝑣6
𝑣3 𝑣7

𝑣4

𝑣5

𝑣2

𝑣0

𝑣4

𝑣1

𝑣2

𝑣5

𝑣3

𝑣4𝑣0𝑣2

𝑣5

(c)

Fig. 8. Case 3.b examples, trying to collapse v0v1. Colors indicate
different materials. (a) when neither of v0v2v3, v1v2v3, v0v3v4, v1v3v4
has dual edges, the blue component is in isolation and v0v1 is not col-
lapsible. (b) when v0v2v3, v0v3v4 has dual edges, the blue component is
not isolated, but since v0v1v3 has the dual edge and neither does v0v3
nor v1v3 has dual face, v0v1 is not collapsible; otherwise collapsing it
will cut off the connection through v0v1v3. (c) when v1v2v3 and v1v3v4
have dual edges, it is not isolated; furthermore, since v0v1v3 has dual
edge and v1v3 has dual face, v0v1 is collapsible.

𝑣0

𝑣1

𝑣2
𝑣3

(a) Original Mesh (b) MAD (c) Our method

Fig. 9. An example which violates the topology filter of [38] and can be
handled by our approach without restriction. The red edges in (a) are
not collapsible by MAD [38], producing the irregular result in (b), while
our method handles them properly, yielding the more compact result in
(c). This shows that our method is more flexible in simplification.

Such cases are indeed important for generating more regular
surfaces by simplification from the initial cubical meshes, as
illustrated in Fig. 9b, 9c.

Remark 2. The edge collapse problem is order-
dependent: even if a sequence of edges can be collapsed, a
shuffling of the sequence may not. Intuitively, for example,
collapse may start from the leaf nodes of a tree-like structure
and eventually remove all branches, but cannot start from
an inner junction. The shrinking of branches of a tree struc-
ture is possible due to the homotopy-equivalence preserving
property of our algorithm; however, significant shrinking is
unlikely due to the large geometric errors caused.

5.3.4 Boundary features
Besides preserving volume subdomain topology, our algo-
rithm also preserves the critical lower dimensional bound-
ary features during simplification. Following [17], [38], [39],
we define the boundary feature elements as lower dimen-
sional elements adjacent to multiple labels representing
shape boundaries between subdomains: (i) 2-features are the
faces with orders larger than 1; (ii) 1-features are the edges
with orders larger than 2; (iii) 0-features are the vertices with
orders larger than 3. Features of these three types form a
cell complex, where each cell consists of consecutive feature
elements of the same order [17], [38], [39]. As can be seen
from Case 3.a, our algorithm preserves the feature complex
by collapsing edges that strictly reside in a cell (1-feature

Algorithm 1: Implementation of Case 3.b.
Input: edge v0v1
Output: if the edge v0v1 is collapsible
isolated = True;
for each tet v0v1vivj ∼ v0v1 do

// Material connection filtering
if v0vivj or v1vivj has material-dual edges then

isolated = False;
if v0v1vj has material-dual edge then

if neither v1vj nor v0vj has material-dual
faces then

return False;
end

end
if v0v1vi has material-dual edge then

if neither v1vi nor v0vi has material-dual
faces then

return False;
end

end
end
// Volume domain connection filtering
if v0v1vj has domain-dual edge then

if neither v1vj nor v0vj has domain-dual faces
then

return False;
end

end
if v0v1vi has domain-dual edge then

if neither v1vi nor v0vi has domain-dual faces
then

return False;
end

end
end
return !isolated;

or 2-feature) of the complex; on the other hand, Cases 1
and 2 involve edges residing off the feature complex and
inside the volume regions, which has no impact on feature
complex either.

5.4 Improving Tetrahedra Regularity

Our strategies on multiple material simplification can pre-
serve features and topology. However, when the number
of vertices is small enough, there may be very few vertices
inside slender features, which will lead to the poor quality of
the tetrahedra. To achieve high simplification rates as well
as high mesh quality, adaptive grading of mesh elements
according to local shape complexity is needed.

A typical approach for adaptive grading is to define
a density field by local feature size [21] and distribute
the vertices accordingly [7]. However, the computation of
local feature size involves loading the entire dataset into
memory and computing the medial axes globally, which is
prohibitive for large-scale data.

We propose an online and local measurement, normal-
ized edge length variance, to simulate the adaptive gradation
induced by the local feature size. To be specific, the nor-

JOURNAL OF LATEX CLASS FILES, VOL. *, NO. *, DEC 2021 9

(a)

short

long

(b)

(c) (d)

Fig. 10. Comparison of gradation by density field (left) or normalized
edge length variance (right). (a) is the result of density field with 4.8K
vertices. (b) is the result of normalized edge length variance with 4.8K
vertices. The color coding denotes edge length: red for short edges,
and blue for long edges. With the same number of vertices, (a) and
(b) show similar gradation and distribution of edge lengths. However,
when more aggressive simplification targets are used (1.5K), (d) the
result of normalized edge length variance has 2.3K vertices and avoids
oversimplification, while (c) the result of density field has 1.5K vertices
and worse quality.

malized edge length variance of a tetrahedron σ is defined
as the ratio of edge length variance to the squared average
edge length:

EV (σ) =
1

6ē2

6∑
i=1

(|ei| − ē)2, (3)

where ē is the average edge length of all edges ei in σ, and
|e| measures the edge length of e.

During the simplification process, we use a threshold τe
for normalized edge length variance to control the gradation
of edge length: for an edge e, it is a valid edge for contraction
only if the EV of all tetrahedra adjacent to e are smaller
than τe after contraction. The threshold τe avoids dramatic
changes of edge lengths and achieves smooth gradation in
the simplified mesh.

Fig. 10 shows a comparison of the results computed
by local feature size based density control and by the
normalized edge variance control. For density field control,
we compute the global density field as the inverse of local
feature size, following [7]. The density value is then used to
modulate the priority for simplification:

Q′ = dvQ, (4)

where dv is the density value of the vertex v, Q is the
quadratic error matrix (Sec. 5.2), and Q′ is the modulated
metric. As expected, a larger density value causes a larger
quadratic error and in turn a lower priority in simplification.
As shown in Fig. 10, given the same number of target
vertices, we can see that the results of density field control
and normalized edge length variance control are similar.

TABLE 1
Basic information of datasets. Many of the datasets we used are very

large-scale and complicated.

Dataset Source Volume Sizes #Vertex # Materials

Spine MRI 545× 171× 171 15.23M 19
Teeth MRI 305× 237× 227 15.84M 30
Chest CT 512× 512× 438 109.96M 24

Kidney CT 512× 512× 611 160.17M 3
Mito EM 2048× 2048× 1000 4202.6M 24547

5.5 Mesh Optimization by Constrained ODT

After simplification within each window, we strive to fur-
ther improve the mesh quality by the constrained ODT
(CODT) iterations that optimize both vertex distribution
and mesh connectivity simultaneously. Though CODT op-
timization is a time-consuming operation for large-scale
meshes, applying it inside a marching window is fast, as the
small number of vertices reduces the cost significantly. We
compute constrained Delaunay triangulation of the vertices
by TetGen [51], with the surface mesh between materials
constrained. This step is to find the optimal connection of
mesh vertices. Note that as discussed in Sec. 4, we also
fix tetrahedra that are on or cross the window boundary
to ensure consistency across windows.

Table 3 illustrates the statistics of the tetrahedral quality.
It measures the mesh quality with two metrics, the radius
ratio and the percentage of slivers. The radius ratio, defined as
the ratio of radii of the inscribed sphere to the circumscrib-
ing sphere of a tetrahedron, is directly related to the shape
of the tetrahedron [3]. A radius ratio of 1 means a regular
tetrahedron, and a ratio of 0 means a tetrahedron that has
collapsed down to a plane. Here we use the minimum
radius ratio to measure the most poorly shaped tetrahedron
and the average radius ratio to measure the overall mesh
quality. We also use the percentage of slivers to measure the
mesh quality. Slivers are flat tetrahedra with vertices that
are nearly co-planar [52]; we set the radius ratio threshold
of 0.1 for a tetrahedron to be considered silver. From Table 3
we can see that the constrained ODT optimization largely
improves mesh quality.

6 RESULTS AND DISCUSSION

We apply the Marching Windows algorithm on several
scanned real-world datasets provided by [46], [53], [54], [55],
[56]. Their basic information is listed in Table 1. Through
experiments, we show that Marching Windows is capable of
dealing with datasets of very large size within tractable time
and limited memory, while preserving topological and geo-
metrical features and achieving high mesh quality. We also
compare with standard 3D meshing methods like Delaunay
refinement [3], [57] and the multi-material adaptive volume
remesher (MAD) [38] where they are applicable, to explore
the strengths and limitations of different approaches. Specif-
ically, we set the target edge length of MAD the same as the
average edge length of our result mesh for each dataset for a
fair comparison in each experiment. We also set the number
of iterations as 10 and remeshing boundaries as true.

JOURNAL OF LATEX CLASS FILES, VOL. *, NO. *, DEC 2021 10

TABLE 2
Time and memory cost of different datasets, running on an Intel(R) Xeon(R) CPU with 128GB of memory. The iteration number of CODT

optimization is 10, the window size is 40×40×40, and the target edge variance is 10.

Result #V Memory Usage Time Usage

Dataset Delaunay
Refinement MAD Ours Delaunay

Refinement MAD Ours Delaunay
Refinement MAD Ours

Spine 7,813(0.05%) 61,884(0.39%) 69,546 (0.44%) 90 M 44.99 G 0.23 G 21s 1.87h 0.88h
Teeth 10,559(0.06%) 76,589(0.47%) 68,892 (0.42%) 99 M 46.39 G 0.42 G 27s 1.93h 0.93h
Chest 165,663(0.01%) NA* 485,664 (0.42%) 952M NA* 1.18 G 158s NA* 6.7h

Kidney 3,120(0.002%) NA* 646,151 (0.40%) 679M NA* 1.20 G 33s NA* 8.95h
Mito NA* NA* 2,291,769 (0.05%) NA* NA* 122.13 G NA* NA* 306.37h

* We set a memory limit 128G for all the datasets. MAD fails to process Chest, Kidney, and Mito datasets within the memory limits.
Marching Windows processes the Mito dataset within around 1 GB; 122.13G is the space used only for merging the processed blocks
into a single standard mesh data structure, which echoes the extreme complexity of the dataset.

TABLE 3
Tetrahedron quality statistics of datasets with target edge variance of
10. Results show that the CODT applied after simplification generally

improve mesh quality.

W/O CODT W. CODT
Dataset Min/Avg RR Sliver (%) Min/Avg RR Sliver (%)

Spine 3.24e-6/0.49 11.25(%) 2.04e-6/0.58 4.75(%)
Teeth 1.56e-6/0.49 11.28(%) 2.30e-6/0.58 4.83(%)
Chest 1.51e-6/0.48 11.55(%) 1.54e-6/0.57 5.18(%)

Kidney 1.46e-6/0.49 11.32(%) 2.28e-6/0.58 4.90(%)
Mito NA NA 2.32e-8/0.57 3.97(%)

6.1 Scalability
Marching Windows is capable of dealing with datasets of
extremely large size, as it only uses bounded resources
as determined by the window size. In comparison, pre-
vious methods based on mesh simplification [37], [58] or
remeshing [38] cannot deal with extra-large datasets, be-
cause they have to load the whole dataset into memory.
For example, we tested the state-of-the-art MAD [38] with
its CGAL implementation [59] on a server computer with
128GB memory: it can only handle small datasets like Spine
dataset and Teeth dataset, while the other datasets exceed
this scale and cause the out-of-memory error (Table 2). For
the Mito dataset, due to its extremely large size, we increase
the memory limit to 300GB but still find that neither MAD
nor Delaunay refinement can load the data to process it
properly.

6.2 Efficiency
In terms of running time, we show that the efficiency of
Marching Windows can be affected by window size in two
ways. On one hand, with a smaller window size, more time
would be spent on disk IO to swap more blocks; on the other
hand, less time would be spent on simplifying the fewer
elements inside a window. Trade-off details by varying
window sizes can be found in Table 5. Our choice of window
size 40 strikes a balance of IO and window processing such
that the total time is the least on our experimental device.

When comparing with other method, Marching Windows
is more efficient than MAD, but is slower than Delaunay re-
finement (Table 2). However, when taking result quality into
consideration, we find that while both MAD and Marching
Windows preserve the input topology and geometry features,
the Delaunay refinement approach is prone to losing these

TABLE 4
Mesh quality of output meshes with different target edge

variances(TEV), tested on the teeth dataset. Larger target variance
leads to higher simplification ratios and lower mesh quality.

TEV # Verts Min/ Avg Radius Ratio Sliver (%)

3 160,204(0.98%) 1.62e-5/0.69 1.12(%)
5 101,441(0.62%) 6.91e-6/0.65 2.12(%)
10 68,892(0.42%) 2.30e-6/0.58 4.83(%)

important features; see Table 6 and Figs. 17, 18 and 19
for both quantitative and qualitative comparisons. More
discussions are made in Sec. 6.5.

Our efficiency over MAD can be attributed to two fac-
tors. First, our simplification-based scheme is fast and in-
volves only local operations and evaluations of mixed QEM
metric, in contrast to the more costly implicit surface fitting
of MAD for material boundaries. Second, the simplified
vertices are well distributed so that only a few iterations
of constrained ODT are sufficient to produce high-quality
mesh inside each window. In comparison, MAD uses an
ensemble of mesh improvement techniques, e.g. edge split-
ting/collapse, flipping, and vertex smoothing, iteratively to
enhance mesh quality. However, we note that our approach
complements the advanced remeshing of MAD, by deriving
sparse tetrahedral meshes from excessively challenging big
data that can be further improved by MAD.

6.3 Mesh Quality

Marching Windows improves the quality of the generated
meshes by constrained optimal Delaunay triangulation. Ta-
ble 3 shows the tetrahedron quality statistics of each dataset
with CODT and without CODT, respectively. Results show
that CODT can significantly improve the mesh quality of the
generated meshes.

As we use target edge variance to control the mesh
quality and avoid oversimplification, different target vari-
ances correspond to different simplification ratios and mesh
quality, with a smaller target variance leading to denser
simplified meshes and higher quality. For example, Table
4 shows the relationship between target edge variance and
mesh quality and Fig. 15 visualizes them, all tested on the
teeth dataset. We show in Fig. 13 that window size would
also affect the coarseness of the result mesh. However, once

JOURNAL OF LATEX CLASS FILES, VOL. *, NO. *, DEC 2021 11

(a) DR (b) MAD (c) Ours

Fig. 11. Mesh quality of different methods, tested on the teeth dataset.
We show the dihedral angle distribution to illustrate the mesh quality
of the generated meshes. Our result is not as good as MAD but is
comparable to Delaunay refinement.

(a) DR (b) MAD (c) Ours

Fig. 12. Boundary mesh quality of different methods, tested on the teeth
dataset. We show the minimum angle distribution of the boundary faces
to illustrate the quality of generated meshes. Though not as good as
the result mesh of MAD, our result has a comparable quality to that of
Delaunay Refinement.

TABLE 5
Time usage for different window sizes, tested on the teeth dataset. With
a smaller window size, more time would be spent on disk-IO and less

time would be spent on simplification.

Window size IO time Process time Total

100×100×100 72s 3730s 3792s
80×80×80 79s 3574s 3653s
60×60×60 103s 3437s 3540s
40×40×40 156s 3259s 3415s
20×20×20 2815s 3015s 5830s

the window size is large enough to accommodate the TEV
threshold, the coarseness of the result mesh remains stable.

We also show the dihedral angle distribution of results
generated by different methods in Fig. 11. We can see
that although our result quality in terms of dihedral angle
distribution is not as good as MAD which focuses primarily
on mesh quality improvement, it is comparable to that of
Delaunay Refinement. In addition, the surface mesh quality
of region boundaries for different methods have similar
patterns, as shown in Fig. 12. We note that our result mesh
can be used as a good initialization and further improved
by MAD if a very high mesh quality is needed.

6.4 Topology Preservation
Besides the proof of homotopy equivalence in Section 5.3,
for validation, we also randomly picked a material from
a complex dataset, Mito, as it comprises of long slender
features and is fragile under simplification methods. Fig. 14
shows that Marching Windows exactly keeps the topology of
the material subdomain. Fig. 16(d) shows another example
of a challenging material domain preserved.

6.5 Feature Preservation
In this section, we compare in detail the result quality and
fidelity in preserving input features both geometrically and

0
100000
200000
300000
400000
500000
600000

20 40 60 80 100

#
 V

er
ts

Window size

Spine

(a)

0
100000
200000
300000
400000
500000
600000

20 40 60 80 100

#
 V

er
ts

Window size

Teeth

(b)

Fig. 13. Number of result vertices varies with window sizes. The plots
show that once the window size is large enough with respect to the TEV
threshold, the coarseness of the result mesh remains stable.

(a) (b)

Fig. 14. Topology preservation in terms of homotopy equivalence. (a)
Mesh of a random material before processing. (b) Mesh after pro-
cessing. We use different colors for different connected components.
Such challenging slender material demonstrates that Marching Win-
dows keeps the topology exactly.

topologically for different methods. Quantitatively, Table 6
reports the largest Hausdorff distance among all the result
material components from their corresponding materials
of the input meshes, as well as the change of material
components from input for Delaunay refinement.

As can be seen from Table 6, the most profound issue
with Delaunay refinement is that it may fail in preserving
the topology and detailed geometry features of input data,
especially for the medical imaging data which have very
complex components. As a result, numerous components
can be lost or disconnected, and there can be a large devi-
ation from the input geometry. Figs. 17 and 18 show how
the input topology is changed by Delaunay refinement, and
Fig. 19 highlights some components in the input that are
entirely missed in the result.

When compared with MAD [38] in Hausdorff distance,
our result is also slightly better, mostly because we use a
mixed QEM geometric objective that is locally more robust
than the implicit smooth surface fitting of MAD, which can
be difficult on the slender features.

7 CONCLUSION

We have presented an efficient Marching Windows algorithm
for generating high-quality compact mesh representations
of large-scale volumetric datasets with multiple labeled ma-
terials. Marching Windows is capable of dealing with datasets
of very large size with limited computational resources by
localizing to one window at each step. It also preserves
strictly the subdomain topologies and with high fidelity
the geometric shapes, which is vital as the subtle features
frequently define important characteristics of the data. The

JOURNAL OF LATEX CLASS FILES, VOL. *, NO. *, DEC 2021 12

(a) TEV = 3 (b) TEV = 5 (c) TEV = 10

Fig. 15. Simplification results of the teeth dataset with different target edge variances. (a) With target edge variance of 3, the result keeps around
0.98% of original vertices. (b) With target edge variance of 5, the result keeps around 0.62% of original vertices. (c) With target edge variance of 10,
the result keeps around 0.42% of original vertices. Smaller target edge variance leads to denser output mesh with higher mesh quality. Geometric
features are also better preserved with smaller target edge variance.

TABLE 6
Hausdorff distance comparison among the result meshes of different

methods. The numbers in parentheses for Delaunay Refinement
represent the changes in the number of model components. Since the
other two methods are designed to preserve topology, we omit the zero

changes for them.

Delaunay Refinement MAD Ours

Spine 13.29 (+1) 12.23 6.51
Teeth 12.62 (-10) 11.58 5.11
Chest 74.02 (-55) NA 18.83

Kidney 26.68 (-19) NA 5.55
Mito NA NA 36.15

key components enabling this quality is a mesh simplifi-
cation approach with topological filtering and mixed error
metric for edge collapse, local edge length variance con-
trol, as well as iterations of CODT optimization to quickly
boost the mesh quality. We have demonstrated the practical
effectiveness of our method on several challenging real-
world datasets, for which we obtain much more compact
but faithful geometric representations suitable for further
applications.

ACKNOWLEDGMENTS

The research of Z. Chen was supported by the National
Natural Science Foundation of China (No. 61972327) and
the Natural Science Foundation of Fujian Province (No.
2022J01001). The research of H. Pfister was partially sup-
ported by NSF grant NCS-FO-2124179 and NIH grant
5U54CA225088-03.

REFERENCES

[1] J. Bronson, J. A. Levine, and R. Whitaker, “Lattice cleaving: A
multimaterial tetrahedral meshing algorithm with guarantees,”
Visualization and Computer Graphics, IEEE Transactions on, vol. 20,
no. 2, pp. 223–237, 2014.

[2] J. Ruppert, “A delaunay refinement algorithm for quality 2-
dimensional mesh generation,” Journal of algorithms, vol. 18, no. 3,
pp. 548–585, 1995.

[3] J. R. Shewchuk, “Tetrahedral mesh generation by delaunay re-
finement,” in Proceedings of the fourteenth annual symposium on
Computational geometry. ACM, 1998, pp. 86–95.

[4] J. R. Shewchuk and H. Si, “Higher-quality tetrahedral mesh gen-
eration for domains with small angles by constrained delaunay
refinement,” in Proceedings of Symposium on Computational Geome-
try. ACM, 2014, pp. 290–299.

(a) (b)

(c) (d)

Fig. 16. Meshing results of the Mito dataset with 2M (0.13%) vertices. (a)
Tiles of input images of the mitochondria dataset. (b) Generated mesh
by Marching Windows. (c) Samples of relatively large mitochondria
in the dataset. (d) One instance mitochondria of the dataset. Left is
the instance model directly obtained from voxelization and right is the
instance model after processing, showing that Marching Windows keeps
such challenging slender features.

[5] M. Meyer, R. Whitaker, R. M. Kirby, C. Ledergerber, and H. Pfister,
“Particle-based sampling and meshing of surfaces in multimaterial
volumes,” Visualization and Computer Graphics, IEEE Transactions
on, vol. 14, no. 6, pp. 1539–1546, 2008.

[6] J.-C. X. Chen Long, “Optimal delaunay triangulations,” Computa-
tional Mathematics, vol. 22, no. 2, pp. 299–308, 2004.

[7] P. Alliez, D. Cohen-Steiner, M. Yvinec, and M. Desbrun, “Varia-
tional tetrahedral meshing,” ACM Transactions on Graphics (TOG),
vol. 24, no. 3, pp. 617–625, 2005.

[8] Z. Chen, W. Wang, B. Lévy, L. Liu, and F. Sun, “Revisiting optimal
delaunay triangulation for 3d graded mesh generation,” SIAM J.
Scientific Computing, vol. 36, no. 3, pp. A930–A954, 2014.

[9] X.-M. Fu, Y. Liu, J. Snyder, and B. Guo, “Anisotropic simplicial
meshing using local convex functions,” ACM TRANSACTIONS
ON GRAPHICS, vol. 33, no. 6, 2014.

[10] M. Murphy, D. M. Mount, and C. W. Gable, “A point-placement
strategy for conforming delaunay tetrahedralization,” International

JOURNAL OF LATEX CLASS FILES, VOL. *, NO. *, DEC 2021 13

(a) Delaunay refinement (b) MAD (c) Ours

Fig. 17. Generated meshes of the spine dataset by different methods. The results above show that the mesh generated by Delaunay refinement
does not keep topology, while the mesh generated by MAD and Marching Windows are accurate and compact.

(a) Delaunay Refinement (b) MAD (c) Ours

Fig. 18. Generated meshes of the teeth dataset by different methods. Same as Fig. 17, the mesh generated by MAD and Marching Windows are
accurate and compact. The mesh processed by Delaunay refinement fuses different materials.

(a) Kidney(DR) (b) Kidney(ours) (c) Chest(DR) (d) Chest(Ours)

Fig. 19. Generated meshes of the kidney and chest datasets. (a) and (c) show that Delaunay refinement fails to preserve input topology. In the
zoom-in circles, we highlight the lost parts by Delaunay Refinement; these substructures exist in the original data but disappear in the result meshes
of Delaunay Refinement. In contrast to the loss of details by Delaunay refinement, Marching Windows handles them well with guaranteed multi-
material topology preservation, as shown in (b) and (d). We do not show the results of MAD because it exceeds the memory and time limits when
processing these two datasets.

Journal of Computational Geometry & Applications, vol. 11, no. 06, pp.
669–682, 2001.

[11] D. Cohen-Steiner, E. C. De Verdière, and M. Yvinec, “Conforming
delaunay triangulations in 3d,” in Proceedings of Symposium on
Computational geometry. ACM, 2002, pp. 199–208.

[12] J. R. Shewchuk, “Constrained delaunay tetrahedralizations and
provably good boundary recovery,” in IMR, 2002, pp. 193–204.

[13] J.-P. Pons, F. Ségonne, J.-D. Boissonnat, L. Rineau, M. Yvinec,
and R. Keriven, “High-quality consistent meshing of multi-label
datasets,” in Information Processing in Medical Imaging. Springer,
2007, pp. 198–210.

[14] D. Boltcheva, M. Yvinec, and J.-D. Boissonnat, “Mesh generation
from 3d multi-material images,” in Medical Image Computing and
Computer-Assisted Intervention–MICCAI 2009. Springer, 2009, pp.
283–290.

[15] H. Si, “Constrained delaunay tetrahedral mesh generation and
refinement,” Finite elements in Analysis and Design, vol. 46, no. 1,
pp. 33–46, 2010.

[16] T. K. Dey and J. A. Levine, “Delaunay meshing of piecewise

smooth complexes without expensive predicates,” Algorithms,
vol. 2, no. 4, pp. 1327–1349, 2009.

[17] S.-W. Cheng, T. K. Dey, and E. A. Ramos, “Delaunay refinement for
piecewise smooth complexes,” Discrete & Computational Geometry,
vol. 43, no. 1, pp. 121–166, 2010.

[18] P. J. Frey and P.-L. George, Mesh Generation: Application to Finite
Elements, 2nd ed. ISTE, May 2007.

[19] Q. Du, V. Faber, and M. Gunzburger, “Centroidal Voronoi tessel-
lations: applications and algorithms,” SIAM Review, vol. 41, pp.
637–676, 1999.

[20] B. Lévy and Y. Liu, “Lp centroidal voronoi tessellation and its
applications,” ACM Trans. Graph., vol. 29, no. 4, pp. 119:1–119:11,
Jul. 2010.

[21] N. Amenta and M. Bern, “Surface reconstruction by voronoi
filtering,” in Proceedings of Symposium on Computational Geometry.
Association for Computing Machinery, 1998, p. 39–48.

[22] J. Rossignac and P. Borrel, Multi-resolution 3D approximations for
rendering complex scenes. Springer, 1993.

[23] M. Soucy and D. Laurendeau, “Multiresolution surface modeling

JOURNAL OF LATEX CLASS FILES, VOL. *, NO. *, DEC 2021 14

based on hierarchical triangulation,” Computer vision and image
understanding, vol. 63, no. 1, pp. 1–14, 1996.

[24] M. Garland and P. S. Heckbert, “Surface simplification using
quadric error metrics,” in Proceedings of Computer Graphics and
Interactive Techniques (SIGGRAPH), 1997, pp. 209–216.

[25] P. S. Heckbert and M. Garland, “Optimal triangulation and
quadric-based surface simplification,” Computational Geometry,
vol. 14, no. 1, pp. 49–65, 1999.

[26] K. J. Renze and J. H. Oliver, “Generalized unstructured decimation
[computer graphics],” Computer Graphics and Applications, IEEE,
vol. 16, no. 6, pp. 24–32, 1996.

[27] I. J. Trotts, B. Hamann, and K. I. Joy, “Simplification of tetrahedral
meshes with error bounds,” Visualization and Computer Graphics,
IEEE Transactions on, vol. 5, no. 3, pp. 224–237, 1999.

[28] P. Cignoni, D. Costanza, C. Montani, C. Rocchini, and R. Scopigno,
“Simplification of tetrahedral meshes with accurate error evalua-
tion,” in Visualization 2000. Proceedings. IEEE, 2000, pp. 85–92.

[29] P. Chopra and J. Meyer, “Tetfusion: an algorithm for rapid tetra-
hedral mesh simplification,” in Visualization, 2002. VIS 2002. IEEE.
IEEE, 2002, pp. 133–140.

[30] S. Noguchi, M. Onosato, S. Kanai et al., “Flexible control of mul-
timaterial tetrahedral mesh properties by using multiresolution
techniques,” Magnetics, IEEE Transactions on, vol. 45, no. 3, pp.
1352–1355, 2009.

[31] Y. Wu, Y. He, and H. Cai, “Qem-based mesh simplification with
global geometry features preserved,” in Proceedings of Computer
graphics and interactive techniques in Australasia and South East Asia.
ACM, 2004, pp. 50–57.

[32] W. Ma, X. Ma, S.-K. Tso, and Z. Pan, “A direct approach for
subdivision surface fitting from a dense triangle mesh,” Computer-
Aided Design, vol. 36, no. 6, pp. 525–536, 2004.

[33] M. Garland and Y. Zhou, “Quadric-based simplification in any
dimension,” ACM Transactions on Graphics (TOG), vol. 24, no. 2,
pp. 209–239, 2005.

[34] O. K.-C. Au, C.-L. Tai, H.-K. Chu, D. Cohen-Or, and T.-Y. Lee,
“Skeleton extraction by mesh contraction,” ACM Trans. Graph.,
vol. 27, no. 3, pp. 44:1–44:10, aug 2008.

[35] H. K. Choi, H. S. Kim, and K. H. Lee, “An improved mesh
simplification method using additional attributes with optimal
positioning,” The International Journal of Advanced Manufacturing
Technology, vol. 50, no. 1-4, pp. 235–252, 2010.

[36] G. Li, W. Wang, G. Ding, Y. Zou, and K. Wang, “The edge collapse
algorithm based on the batched iteration in mesh simplification,”
in Computer and Information Science (ICIS), 2012 IEEE/ACIS 11th
International Conference on. IEEE, 2012, pp. 356–360.

[37] R. Moore, G. Rohrer, and S. Saigal, “Reconstruction and simplifica-
tion of high-quality multiple-region models from planar sections,”
Engineering with Computers, vol. 25, no. 3, pp. 221–235, 2009.

[38] N. Faraj, J.-M. Thiery, and T. Boubekeur, “Multi-material adaptive
volume remesher,” Computers & Graphics, vol. 58, pp. 150–160,
2016.

[39] F. Vivodtzev, G.-P. Bonneau, S. Hahmann, and H. Hagen,
“Substructure topology preserving simplification of tetrahedral
meshes,” in Topological methods in data analysis and visualization.
Springer, 2011, pp. 55–66.

[40] T. K. Dey, H. Edelsbrunner, S. Guha, and D. V. Nekhayev, “Topol-
ogy preserving edge contraction,” Publ. Inst. Math. (Beograd) (N.S,
vol. 66, 1998.

[41] D. M. Thomas, V. Natarajan, and G.-P. Bonneau, “Link conditions
for simplifying meshes with embedded structures,” IEEE Trans-
actions on Visualization and Computer Graphics, vol. 17, no. 7, pp.
1007–1019, 2010.

[42] R. Said, N. Weatherill, K. Morgan, and N. Verhoeven, “Distributed
parallel delaunay mesh generation,” Computer methods in applied
mechanics and engineering, vol. 177, no. 1-2, pp. 109–125, 1999.

[43] Y. Ito, A. M. Shih, A. K. Erukala, B. K. Soni, A. Chernikov,
N. P. Chrisochoides, and K. Nakahashi, “Parallel unstructured
mesh generation by an advancing front method,” Mathematics and
Computers in Simulation, vol. 75, no. 5-6, pp. 200–209, 2007.

[44] A. Loseille, V. Menier, and F. Alauzet, “Parallel generation of large-
size adapted meshes,” Procedia Engineering, vol. 124, pp. 57–69,
2015.

[45] D. Cabiddu and M. Attene, “Large mesh simplification for dis-
tributed environments,” Computers & Graphics, vol. 51, pp. 81–89,
2015.

[46] D. Wei, Z. Lin, D. Franco-Barranco, N. Wendt, X. Liu, W. Yin,
X. Huang, A. Gupta, W.-D. Jang, X. Wang et al., “Mitoem dataset:

Large-scale 3d mitochondria instance segmentation from em im-
ages,” in International Conference on Medical Image Computing and
Computer-Assisted Intervention. Springer, 2020, pp. 66–76.

[47] W. E. Lorensen and H. E. Cline, “Marching cubes: A high res-
olution 3d surface construction algorithm,” SIGGRAPH Comput.
Graph., vol. 21, no. 4, pp. 163–169, Aug. 1987.

[48] A. Doi and A. Koide, “An efficient method of triangulating equi-
valued surfaces by using tetrahedral cells,” IEICE TRANSAC-
TIONS on Information and Systems, vol. 74, no. 1, pp. 214–224, 1991.

[49] H. Edelsbrunner and J. Harer, Computational topology: an introduc-
tion. American Mathematical Soc., 2010.

[50] M. Desbrun, E. Kanso, and Y. Tong, “Discrete differential forms
for computational modeling,” in Discrete differential geometry.
Springer, 2008, pp. 287–324.

[51] H. Si, “Tetgen, a delaunay-based quality tetrahedral mesh gener-
ator,” ACM Trans. Math. Softw., vol. 41, no. 2, pp. 11:1–11:36, Feb.
2015.

[52] D. Eppstein, “Global optimization of mesh quality,” Tutorial at the
10th International Meshing Roundtable, vol. 10, p. 13, 2001.

[53] Z. Cui, C. Li, and W. Wang, “Toothnet: Automatic tooth instance
segmentation and identification from cone beam ct images,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2019, pp. 6368–6377.

[54] N. Heller, F. Isensee, K. H. Maier-Hein, X. Hou, C. Xie, F. Li,
Y. Nan, G. Mu, Z. Lin, M. Han et al., “The state of the art in kidney
and kidney tumor segmentation in contrast-enhanced ct imaging:
Results of the kits19 challenge,” Medical Image Analysis, p. 101821,
2020.

[55] J. Yao, J. E. Burns, D. Forsberg, A. Seitel, A. Rasoulian, P. Abolmae-
sumi, K. Hammernik, M. Urschler, B. Ibragimov, R. Korez et al., “A
multi-center milestone study of clinical vertebral ct segmentation,”
Computerized medical imaging and graphics, vol. 49, pp. 16–28, 2016.

[56] “IRCAD research data,” https://www.ircad.fr/research/
3d-ircadb-02/, accessed: 2020-06-25.

[57] P. Alliez, C. Jamin, L. Rineau, S. Tayeb, J. Tournois, and M. Yvinec,
“3D mesh generation,” in CGAL User and Reference Manual, 4th ed.
CGAL Editorial Board, 2015.

[58] B. Cutler, J. Dorsey, and L. McMillan, “Simplification and im-
provement of tetrahedral models for simulation,” in Proceedings
of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry
processing. ACM, 2004, pp. 93–102.

[59] The CGAL Project, CGAL User and Reference Manual, 5.1.0 ed.
CGAL Editorial Board, 2020. [Online]. Available: https://doc.
cgal.org/5.1/Manual/packages.html

Wenhua Zhang received the BEng degree in
computer science from Shandong University.
She is currently working toward the PhD degree
in computer science at The University of Hong
Kong. Her research interests include medical
image processing, computer vision, and compu-
tational geometry.

Yating Yue received the BEng degree in soft-
ware engineering from Shandong University, and
the PhD degree in computer science from The
University of Hong Kong. Her research interests
include computer graphics, HCI, and Mixed Re-
ality.

https://www.ircad.fr/research/3d-ircadb-02/
https://www.ircad.fr/research/3d-ircadb-02/
https://doc.cgal.org/5.1/Manual/packages.html
https://doc.cgal.org/5.1/Manual/packages.html

JOURNAL OF LATEX CLASS FILES, VOL. *, NO. *, DEC 2021 15

Hao Pan received the BEng degree in soft-
ware engineering from Shandong University, and
the PhD degree in computer science from The
University of Hong Kong. He is currently a re-
searcher with Microsoft Research Asia. His re-
search interests include computer graphics and
computational geometry.

Zhonggui Chen received the BSc and PhD
degrees in applied mathematics from Zhejiang
University, in 2004 and 2009, respectively. He is
working as a professor in the School of Infor-
matics, Xiamen University, China. His research
interests include computer graphics, computa-
tional geometry, and digital image processing.
For more information, please visit http://graphics.
xmu.edu.cn/∼zgchen/.

Chuan Wang received the BEng degree in Elec-
tronic Information Engineering from University of
Science and Technology of China, and the PhD
degree in computer science from The University
of Hong Kong. His research interests include
computer vision, computer graphics, and ma-
chine learning.

Hanspeter Pfister received the PhD degree in
computer science from the Stony Brook Univer-
sity and an MS degree in electrical engineering
from ETH Zurich, Switzerland. He is the Aca-
demic Dean of Computational Sciences and En-
gineering and An Wang Professor of Computer
Science in the Harvard John A. Paulson School
of Engineering and Applied Sciences. He is also
an affiliate faculty member of the Center for Brain
Science at Harvard. His research in visual com-
puting lies at the intersection of visualization,

computer graphics, and computer vision and spans a wide range of
topics, including biomedical visualization, image and video analysis,
machine learning, and data science. For more information, please visit
https://vcg.seas.harvard.edu/..

Wenping Wang received the PhD degree in
computer science from the University of Alberta,
Canada. He is now a Professor of Computer
Science & Engineering at Texas A&M University.
He conducts research in visual computing and
has over 300 publications in related fields. His
research interests include computer graphics,
computer vision, geometric modeling, robotics
and medical imaging. He is an ACM Fellow and
IEEE Fellow. For more information, please visit
https://i.cs.hku.hk/∼wenping/.

http://graphics.xmu.edu.cn/~zgchen/
http://graphics.xmu.edu.cn/~zgchen/
https://vcg.seas.harvard.edu/.
https://i.cs.hku.hk/~wenping/

	Introduction
	Related Work
	Delaunay-based Methods
	Variational Methods
	Lattice-based Methods
	Mesh Simplification Methods
	Distributed Mesh Generation

	Overview
	Scalable Processing by Marching Windows
	Window Marching Strategy
	Memory-Disk Data Swapping

	Mesh Generation within A Window
	Mesh Initialization
	QEM Driven Simplification
	Multi-Material Topology Preservation
	Element types
	Dual graph
	Edge collapse filtering algorithm
	Boundary features

	Improving Tetrahedra Regularity
	Mesh Optimization by Constrained ODT

	Results and Discussion
	Scalability
	Efficiency
	Mesh Quality
	Topology Preservation
	Feature Preservation

	Conclusion
	References
	Biographies
	Wenhua Zhang
	Yating Yue
	Hao Pan
	Zhonggui Chen
	Chuan Wang
	Hanspeter Pfister
	Wenping Wang

