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Abstract

Sketch design concepts are recurring patterns found in parametric CAD sketches.
Though rarely explicitly formalized by the CAD designers, these concepts are
implicitly used in design for modularity and regularity. In this paper, we propose a
learning based approach that discovers the modular concepts by induction over raw
sketches. We propose the dual implicit-explicit representation of concept structures
that allows implicit detection and explicit generation, and the separation of structure
generation and parameter instantiation for parameterized concept generation, to
learn modular concepts by end-to-end training. We demonstrate the design concept
learning on a large scale CAD sketch dataset and show its applications for design
intent interpretation and auto-completion.

1 Introduction

Parametric CAD modeling is a standard paradigm for mechanical CAD design nowadays. In
parametric modeling, CAD sketches are fundamental 2D shapes used for various 3D construction
operations. As shown in Fig. 1, a CAD sketch is made of primitive geometric elements (e.g. lines,
arcs, points) which are constrained by different relationships (e.g. coincident, parallel, tangent); the
sketch graph of primitive elements and constraints captures design intents, and allows adaptation and
reuse of designed parts by changing parameters and updating all related elements automatically [1].
Designers are therefore tasked with the meticulous design of such sketch graphs, so that the inherent
high-level design intents are easy to interpret and disentangle. To this end, meta-structures (Fig. 1),
which we call sketch concepts in this paper, capture repetitive design patterns and regulate the design
process with more efficient intent construction and communication [9, 12]. Concretely, each sketch
concept is a structure that encapsulates specific primitive elements and their compositional constraints,
and the interactions of its internal elements with outside only go through the interface of the concept.

How to discover these modular concepts automatically from raw sketch graphs? In this paper, we cast
this task as a program library induction problem by formulating a domain specific language (DSL) for
sketch generation, where a sketch graph is formalized as a program, and sketch concepts are modular
functions that abstract primitive elements and compose the program (Fig. 1). Discovering sketch
concepts thus becomes the induction of library functions from sketch programs. While previous
works address the general library induction problem via expensive combinatorial search [20, 5, 7],
we present a simple end-to-end deep learning solution for sketch concepts. Specifically, we bridge
the implicit and explicit representations of sketch concepts, and separate concept structure generation
from parameter instantiation, so that a powerful deep network can detect and generate sketch concepts,
by training with the inductive objective of reconstructing sketch with modular concepts.

We conduct experiments on large-scale sketch datasets [17]. The learned sketch concepts show that
they provide modular interpretation of design sketches. The network can also be trained on incomplete
input sketches and learn to auto-complete them. Comparisons with state-of-the-art approaches that
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Figure 1: Concept learning from sketch graphs. (a) In black are the raw sketch and its constraint
graph, with nodes showing primitives and edges depicting constraints. Colored are the restructured
sketch and its modular constraint graph, where each module box represents a concept; primitives and
constraint edges are colored according to the modular concepts. (b) The restructured sketch graph in
our DSL program representation (List 1), where the whole sketch S is compactly constructed with
three instances of two learned L1 types. We simplify notation super/sub-scripts for readability.

solve sketch graph generation through autoregressive models show that the modular sketch concepts
learned by our approach enable more accurate and interpretable completion results.

To summarize, we make the following contributions in this paper:

• We formulate the task of discovering modular CAD sketch concepts as program library
induction for a declarative DSL modeling sketch graphs.

• We propose a self-supervised deep learning framework that discovers modular libraries for
the DSL with simple end-to-end training.

• We show the framework learns from large-scale datasets sketch concepts capturing intuitive
and reusable components, and enables structured sketch interpretation and auto-completion.

2 Related work

Concept discovery for CAD sketch It is well acknowledged in the CAD design community that
design intents are inherent to and implicitly encoded by the combinations of geometric primitives and
constraints [12, 10]. However, there is generally no easy approach to discover the intents and make
them explicit, albeit through manual design of meta-templates guided by expert knowledge [9, 10].
We propose an automatic approach to discover such intents, by formulating the intents as modular
structures with self-contained references, and learning them through self-supervised inductive training
with simple objectives on large raw sketch dataset. Therefore, we provide an automatic approach for
discovering combinatorially complex structures through end-to-end neural network learning.

Generative models for CAD sketch A series of recent works [6, 24, 13, 18, 25] use autoregressive
models [22] to generate CAD sketches and constraints modeled through pointer networks [23]. These
works focus on learning from large datasets [17] to generate plausible layouts of geometric primitives
and their constraints, which can then be fine-tuned with a constraint solver for more regular sketches.
Different from these works, our aim is to discover modular structures (i.e. sketch concepts) from the
concrete sketches. Therefore, our framework provides higher-level interpretation of raw sketches and
more transparent auto-completion than these works (cf. Sec. 6).

Program library induction for CAD modeling Program library induction has been studied in
the shape modeling domain [7]. General program synthesis assisted by deep learning is a research
topic with increasing popularity [20, 3, 4, 19, 5]. The library induction task specifically involves
combinatorial search, as has been handled by neural guided search [20, 5] or by pure stochastic
sampling [7]. We instead present an end-to-end learning algorithm for sketch concept induction.
In particular, based on key observations about sketch concepts, we present implicit-explicit dual
representations of concept library functions, and separate the concept structure generation from
parameter instantiation, to enable self-supervised training with induction objectives.
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List 1: A domain-specific language formulating CAD sketch concepts
// Basic data types
Length, Angle, Coord, Ref
// L0 primitive types
Line → cstart_x, cstart_y, cend_x, cend_y : Coord
Circle → ccenter_x, ccenter_y : Coord, lradius : Length
· · ·
// L0 constraint types
Coincident → λ(r1, r2 : Ref).{}
Parallel Distance → λ(r1, r2 : Ref).{ldist : Length}
· · ·
// L1 composite types
T1

i → λ([αk : Ref]).{t0i,j : T0
j ∈ L0, RT1

i

(
[t0i,j ]∪[αk]

)
}

// Sketch decomposition
S → {t1i : T1

i ∈ L1, RS([t
1
i ])}

3 CAD sketch concept formulation

To capture the notion of sketch concepts precisely, we formulate a domain specific language (DSL)
(syntax given in List 1, an exhaustive list of data types given in the supplementary). In the DSL, we
first define the basic data types, including length, angle, coordinate, and the reference type, where a
reference binds to another reference or a primitive for modeling the constraint relationships. Second,
we define the L0 collection of primitive and constraint types as given in raw sketches. In particular,
we regard the constraints as functions whose arguments are the references to bind with primitives, e.g.
a coincident constraint c = λ(r1, r2 : Ref).{}, where a function is represented in the lambda calculus
style (one may refer to [14] for introductory lambda calculus formality). Some constraints have
parameters other than mere references, which are treated as variables inside, e.g. parallel distance in
List 12. Third, we define the sketch concepts as L1 types composed of L0 types. To be specific, a
composite type T1

i ∈ L1 is a function with arguments [αk] and members t0i,j : T
0
j ∈ L0, which are

connected through a composition operator RT1
i
= {p(q)|p, q ∈ [t0i,j ]∪[αk]} that specifies how each

pair of primitive elements binds together. For example, a coincident constraint p = λ(r1, r2).{} may
take a line primitive q as its first argument and bind to an argument αk of the composite type as its
second argument, i.e. p(q, αk) ∈ RT1

i
; on the other hand, an argument αk may bind to a primitive

q, which is specified by αk(q) ∈ RT1
i
. Finally, an input sketch S is restructured as a collection of

composite types t1i : T1
i ∈ L1, as well as their connections specified by a corresponding composition

operator RS . RS records how different concepts bind through their arguments, which further transfers
to L0 typed elements inside the concepts and translates into the raw constraint relationships of the
sketch graph. Fig. 1(b) shows an example DSL program encoding sketches and concepts.

Given the explicit formulation of CAD sketches through a DSL, the discovery of sketch concepts
becomes the task of learning program libraries L1 by induction on many sketch samples. Therefore,
our task resembles shape program synthesis that aims at building modular programs for generating
shapes [5, 7], and differs from works that use autoregressive language models to generate CAD sketch
programs one token at a time [6, 13, 18]. In Sec. 6.2, we show that the structured learning of CAD
sketches enables more robust auto-completion than unstructured language modeling.

The search of structured concepts is clearly a combinatorial problem with exponential complexity,
which is intractable unless we can exploit the inherent patterns in large-scale sketch datasets. However,
to enable deep learning based detection and search of structured concepts, we need to bridge the
implicit deep representations and the explicit and interpretable structures, which we build through the
following two key observations:

• A concept has dual representations: implicit and explicit. The implicit representation as
embeddings in latent spaces is compatible with deep learning, while the explicit representa-
tion provides structures on which desired properties (e.g. modularity) can be imposed.

2While other works [13, 18] have skipped such constraints, we preserve them but omit generating the
parameter values that can be reliably deduced from primitives. See more discussions in the supplementary.
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Figure 2: Framework illustration. (a) The detection module is a transformer network that detects
from the sketch sequence [t0i ] implicitly encoded concepts [qi] and their composition qR. (b) Each q
is quantized against the concept library L1 to obtain prototype q′, which is expanded by structure
network into an explicit structure T1 and further instantiated by parameter network into t1. (c) The
collection of [t1i ] are assembled by composition operator RS generated from qR to obtain the final
generated sketch graph, which is compared with the input sketch for loss computation.

• A concept is a parameterized structure. A concept is a composite type with fixed modular
structure for interpretability, but the structure is always instantiated by assigning parameters
to its component primitives when the concept is found in a sketch.

3.1 Method overview

According to the two observations, we design an end-to-end sketch concept learning framework by
self-supervised induction on sketch graphs. As shown in Fig. 2, the framework has two main steps
before loss computation: a detection step that generates implicit representations of concepts making
up the input sketch, and an explicit generation step that expands the implicit concepts into concrete
structures on which self-supervision targets like reconstruction and modularity are applied.

Building on a state-of-the-art detection architecture [2], the detection module D takes a sketch S as
input and detects the modular concepts within it, i.e. {qi} = D(S, {qi}), where the concepts are
represented implicitly as latent codes {qi}, and {qi} are a learnable set of concept instance queries.
Notably, we apply vector quantization to the latent codes and obtain {q′

i = minp∈L1 ||p− qi||2},
which ensures that each concept is selected from the common collection of learnable concepts L1

used for restructuring all sketches.

The explicit generation module is separated into two sub-steps, structure generation and parameter
instantiation, which ensures that the modular concept structures are explicit and reused throughout
different sketch instances. Specifically, the structure network takes each quantized concept code q′

i
and generates its explicit form T1

i in terms of primitives and constraints of L0 types along with the
composition operator RT1

i
. Subsequently, the parameter network instantiates the concept structure by

assigning parameter values to each component of T1
i conditioned on qi and input sketch, to obtain t1i .

The composition operator RS for combining {t1i } is generated from a special latent code qR trans-
formed by D from a learnable token qR appended to {qi}.

The entire model is trained end-to-end by reconstruction and modularity objectives. In particular,
we design loss functions that measure differences between the generated and groundtruth sketch
graphs, in terms of both per-element attributes and pairwise references. Given our explicit modeling
of encapsulated structures of the learned concepts, we can further enhance the modularity of the
generation by introducing a bias loss that encourages in-concept references.

4 End-to-end sketch concept induction

4.1 Implicit concept detection

Sketch encoding A raw sketch S can be serialized into a sequence of L0 primitives and constraints.
Previous works have adopted slightly different schemes to encode the sequence [6, 13, 18, 24, 25].
In this paper, we build on the previous works and take a simple strategy akin to [13, 25] for input
sketch encoding. Specifically, we split each L0 typed instance t0 into several tokens: type, parameter,
and a list of references. For each of the token category, we use a specific embedding module. For
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example, parameters as scalars are quantized into finite bins before being embedded as vectors (see
supplementary for the quantization details), and since there are at most five parameters for each
primitive, we pack all parameter embeddings into a single code. On the other hand, each constraint
reference as a primitive index is directly embedded as a code. Therefore, each token of a L0 typed
instance is encoded as

et0.x = enctype(t0) + encpos(t0.x) +
[
encparam(t0.x)|encref (t0.x)

]
, (1)

where t0.x iterates over the split tokens (i.e., type, parameters, references), the type embedding is
shared for all tokens of the instance, the position embedding counts the token index in the whole
split-tokenized sequence of S, and parameter or reference embeddings are applied where applicable.

Concept detection We build the detection network as an encoder-decoder transformer following
[2]. The transformer encoder operates on the sketch encoded sequence [et0i∈S ] and produces the
contextualized sequence [e′

t0i∈S
] through layers of self-attention and feed-forward. The transformer

decoder takes a learnable set of concept queries [qi] of size kqry plus a special query qR for
composition generation, and applies interleaved self-attention, cross-attention to [e′

t0i
] and feed-

forward layers to obtain the implicit concept codes [qi] and qR. The concept codes are further
quantized into [q′

i] by selecting concept prototypes from a library L1 implicitly encoding L1, before
being expanded into explicit forms.

4.2 Explicit concept structure generation

Concept structure expansion Given a library code q′ ∈ L1 representing a type T1 ∈ L1, through an
MLP we expand its explicit structure as a collection of codes [t0i ] representing the L0 type instances
[t0i ] and a matrix representing the composition RT1 of [t0i ] and arguments (cf. List 1).

concept A concept BRS

primitive constraint
inward arg outward arg

We fix the maximum number of L0 type instances to kL0 (12 by default), and
split the arguments into two groups, inward arguments and outward arguments,
each of maximum number karg (2 by default). Each type code t0i is decoded
into discrete probabilities over L0 with an additional probability for null type
ϕ to indicate the emptiness of this element (cf. Sec. 5.1), by dectype(·) as
the inverse of enctype(·) in Sec. 4.1. An inward argument only points to a
primitive inside the concept structure and originates from a constraint outside,
and conversely an outward argument only points to primitives outside and
originates from a constraint inside the concept (see inset for illustration); the split into two groups
eases composition computation, as discussed below.

The composition operator RT1 is implemented as an assignment matrix RT1 of shape (2kL0+karg)×
(kL0+karg), where each row corresponds to a constraint reference or inward argument, and each
column to a primitive or outward argument. The two-fold coefficient of constraint references comes
from that any constraint we considered in the dataset [17] has at most two arguments. Each row is a
discrete probability distribution such that

∑
j RT1 [i, j] = 1, with the maximum entry signifying that

the i-th constraint/outward argument refers to the j-th primitive/inward argument. We compute RT1

by first mapping the concept code q′ to a matrix of logits in the shape of RT1 , and then applying
softmax transform for each row. Notably, we avoid the meaningless loops of an element referring
back to itself, and inward arguments referring to outward arguments, by masking the diagonal blocks
RT1 [2i:2i+2, i], i∈[kL0 ] and the argument block RT1 [2kL0 :, kL0 :] by setting their logits to −∞.

Cross-concept composition Aside from references inside a concept, references across concepts are
generated to complete the whole sketch graph. We achieve cross-concept references by argument
passing (see inset above for illustration). In particular, we implement the cross-concept composition
operator RS as an assignment matrix RS of shape (kqry·karg)×(kqry·karg) directly mapped from qR

through an MLP. Similar to the in-concept composition matrix, each row of the cross-concept matrix
is a discrete distribution such that

∑
j RS [i, j] = 1, with the maximum entry signifying that the

(i mod karg)-th outward argument of the ⌊i/karg⌋-th concept instance refers to the (j mod karg)-th
inward argument of the ⌊j/karg⌋-th concept instance.

The complete cross-concept reference is therefore the product of three transport matrices:

Rcref [t
1
i , t

1
j ] = Rt1i

[:2kL0 , kL0 :]×RS [i·karg:(i+1)·karg, j·karg:(j+1)·karg]×Rt1j
[2kL0 :, :kL0 ],
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(2)

where Rcref [t
1
i , t

1
j ] is a block assignment matrix of shape 2kL0×kL0 . Intuitively, Rcref [t

1
i , t

1
j ]

specifies how constraints inside t1i refers to primitives of t1j throughout all possible paths crossing the
arguments of two concepts.

Collectively, we denote the complete reference matrix for all pairs of generated L0 elements as R of
shape (2kqry·kL0)× (kqry·kL0), which includes in-concept and cross-concept references.

4.3 Concept instantiation by parameter generation

Instantiating a concept structure requires assigning parameters to the components where applicable.
Therefore, as shown in Fig. 2, the parameter generation network takes a concept structure T1 and
its implicit instance encoding q as input, and produces the specific parameters for each L0 typed
instances inside the concept. In addition, as the parameters of generated instances are directly related
to the input parameters of the raw sketch S, we find it improves convergence and accuracy by allowing
the parameter network to attend to the input tokens.

We implement the parameter network as a transformer decoder in a similar way as [2]. The instance
code q is first expanded to kL0 tokens by a small MLP, which are summed with [t0i ] token-wise to
obtain the query codes. The parameter network then transforms the query codes through interleaved
layers of self-attention, cross-attention to the contextualized input sequence [e′t0 ], and feed-forward,
before finally mapped to explicit parameters in the form of probabilities over quantized bins, through
a decoding layer decparam(·) that is inverse of encparam(·) in Sec. 4.1.

5 Induction objectives

Without any given labels of concepts, we use the following objectives to supervise the inductive
network training: sketch reconstruction, concept quantization, and modularity enhancement.

5.1 Reconstruction loss

As discussed in Sec. 4, an input sketch is restructured into a set of sketch concepts which are expanded
into a graph of primitives and constraints; the generated sketch graph S̃ is compared with the input
sketch S for reconstruction supervision.

The comparison of generated and target graphs requires a one-to-one correspondence between
elements of the two graphs, on which the graph differences can be measured. However, it is nontrivial
to find such a matching, because not only are there variable numbers of elements in the two graphs,
but also both elements and references between elements must be taken into account for matching. To
this end, we build a cost matrix that measures the difference for each pair of generated and target
elements, in terms of their attributes and references, and apply linear assignment matching on the
cost matrix [11, 8] to establish the optimal correspondence between two graphs.

Cost matrix construction To compare each pair of generated element and target element, we
measure their type differences, and further use type casting to interpret the generated element as the
target type, so that their parameters can be compared. To account for reference differences between
the two elements, we compare the reference arrows by the differences of their pointed primitives.

ta
rg

et
s

generations

cost matrix
green: primitives
orange: constraints

p

p.r
q q.r∼R[2q+r, :]

Binary cost between
target constraint p and
generated element q.

Specifically, given the target graph S of ktgt elements and the generated graph
S̃ of kqry·kL0 elements, we build the cost matrix C of shape ktgt× (kqry·kL0)
in two steps. First, for a pair of target element p and generated element q, we
compare their type and parameter differences by cross-entropy. We denote the
cost matrix in this stage as Cury, as it accounts for the element-wise unary
distances between two graphs. Second, to measure the binary distances of
references, for each target constraint element p and its r-th referenced primitive
p.r, its distance from the generated references of element q is computed as
(also illustrated by inset figure):

Cbry[p, q] =
∑

r∈{0,1}

∑
j∈S̃

R[2q + r, j]×Cury[p.r, j], (3)
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where R[2q+r, j] is the probability of q taking j as its r-th reference, as predicted by the composition
operation (Sec. 4.2). Intuitively, the binary cost is a summation of unary costs weighted by predicted
reference probabilities, where the unary costs measure how different a generated pointed primitive is
from the target pointed primitive. The complete cost matrix is C = wuryCury + wbryCbry, with
wury = 50, wbry = 1; we give a larger weight to the unary costs because meaningful binary costs
depend on reliable unary costs in the first place, as evident in Eq. (3).

Matching and reconstruction loss Given the cost matrix C, we apply linear assignment to obtain a
matching σ : S̃ → S∪{ϕ} between S̃ and S. Note that the number of elements of these two graphs
can be different, but we have chosen kqry, kL0 such that the generated elements always cover the
target elements. Therefore, σ(q) = p assigns a matched generation q∈M⊂S̃ to a target p∈S, but
assigns the rest unmatched generations M ′ = S̃\M to the empty target ϕ, i.e. σ(M ′) = ϕ. The
loss terms for matched generations are simply the corresponding cost terms C[σ(q), q], q ∈ M ; for
unmatched generations, we supervise its type to be the empty type ϕ and neglect its parameters or
references. We denote the average loss of all generated terms as Lrecon.

Besides matching cost, we also use an additional reference loss to encourage the generated references
to be sharp (i.e., R being closer to binary). This loss complements the binary costs mentioned above
by making sure that even if the generated primitives are similar, a generated constraint only refers to
one primitive sharply. We define the sharp reference loss as

Lsharp = − 1

|Sc|
∑

p∈Sc,r

logR[2σ−1(p) + r, σ−1(p.r)], (4)

where p iterates over the target constraints Sc, σ−1(·) is the inverse mapping from target element to
generation, and we skip a term if p.r does not exist for constraints with one reference.

5.2 Concept quantization loss

Following [21, 16], we optimize the concept code quantization against library L1 with:

Lvq =
1

kqry

∑
i∈[kqry]

||sg(qi)− q′
i||+ β||qi − sg(q′

i)||, (5)

where sg(·) is the stop gradient operation. For training stability, we follow [16] and replace the first
term with EMA updates of q′ ∈ L1. Furthermore, we improve spare code usage by reviving unused
code in L1 periodically [16] (please refer to supplementary for details).

5.3 Modularity enhancement loss

We look for modular L1 concepts that have rich and meaningful encapsulated structures, rather than
arbitrary groups of L0 elements that rely on cross-group references to recover the graph structures.
This modularity can be enhanced by limiting the use of arguments for sketch concepts. Instead
of allocating very few arguments as a hard constraint, we introduce a soft bias loss to encourage
the restrictive use of arguments, which may still cover cases when more arguments are needed for
accurate reconstruction. To be specific, we penalize the accumulated probability of elements pointing
to outward arguments:

Lbias =
1

|Sc|
∑

p∈Sc,r

∑
i∈[karg]

RT1∋σ−1(p)[2σ
−1(p) + r, i+ kL0 ], (6)

where again p iterates over the target constraints Sc, σ−1(·) is the inverse mapping from target
element to generation, and i+ kL0 slices the reference probabilities to outward arguments.

5.4 Total loss

The training objective sums up losses of reconstruction, concept quantization and modularity bias:

Ltotal = wreconLrecon + wsharpLsharp + wvqLvq + wbiasLbias, (7)

where we empirically use weights wrecon = 1, wsharp = 20, wvq = 1, wbias = 25 throughout all
experiments unless otherwise specified in the ablation studies.
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6 Results

Dataset and implementation Following previous works [6, 13, 18], we adopt the SketchGraphs
dataset [17] which contains millions of real-world CAD sketches for training and evaluation. We
filter the data by removing trivially simple sketches and duplicates, and limit the sketch complexity
such that the number of primitives and constraints is within [20, 50]. As a result, we obtain around 1
million sketches and randomly split them into 950k for training and 50k for testing. We defer network
details to the supplementary and open-source code and data to facilitate future research3.

Evaluation metrics We evaluate the generated sketches in terms of reconstruction accuracy and
sketch concept modularity, which are the two major objectives of our task. We measure reconstruction
accuracy by the F-scores of generated primitives and constraints, where F-score is simply the harmonic
mean of precision and recall. A generated primitive is considered a correct match with ground-truth
if its type and parameters are correct, where for the scalar parameters we allow a threshold of 10% of
quantization levels. A constraint is correct if and only if its type, parameter and references match
ground-truth, i.e., the generated q is correct w.r.t target p iff q has the same type and parameters with
p and the primitives q.r and p.r are correctly matched. Modularity is measured by the percentage of
constraints with references entirely within the encapsulating concepts, among all correct constraints.
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Figure 4: Instances of concepts. Left: two learned rectangle concepts with subtly different structures.
Right: four sketches containing instances of these two concepts.

(a) (b)
Figure 5: Auto completion. Each example shows the input partial sketch (black) and groundtruth
completion (red), result of the autoregressive baseline, and our result (colored by concepts).

3URL to code and data: https://github.com/yyuezhi/SketchConcept
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Autoregressive baseline

Ours
Autoregressive baseline

Ours

(a) primitive (b) constraint
Figure 6: Auto completion comparison. Plotted
are F-scores at different ratios of partial input.

Config Primitive Constraint Modular(%)

−Cbry 0.993 0.290 34.2
−Lsharp 0.983 0.104 100
−Lbias 0.992 0.743 13.3

Ours 0.994 0.766 50.8

Table 1: Loss ablation. F-scores are reported for
primitives and constraints.

6.1 Design intent interpretation

By training our model on the raw sketches with self-supervised induction losses, we obtain a result
library of sketch concepts and a model for design intent parsing that interprets a given sketch into
modular concepts and their combination. Indeed, we find the automatically discovered concepts
capture natural design intents and modular structures. For example, through the restructured sketches
and constraint graphs in Figs. 1 and 3, we find that our network decomposes sketches into modular
structures like rectangles, line-arcs and parallel lines that align symmetrically, even though no such
prior knowledge is applied during training except for concept modularity. Fig. 4 shows that a given
concept can be used repetitively in different sketches, and structures with subtle differences in
constraint relations can be detected and distinguished into different concepts of the library. Note that
these subtle structural differences are subsumed in the input sketch graph, which makes them more
difficult to detect. We refer to the supplementary for more examples of design intent parsing and
instantiation of learned concepts, as well as quantitative analysis of the learned library.

6.2 Auto completion

Auto-completion is a critical feature of CAD modeling software for assisting designers. Given a
partial sketch of primitives and their constraints, auto-completion aims at complementing them with
the rest primitives and constraints to form regular and well-structured designs. Therefore, our concept
detection and generation approach would naturally enhance the auto-completion task with better
regularity. For training and evaluation, following previous work [18], we synthesize the partial input
by removing a suffix of random length (up to 50%) from the sketch sequence, along with constraints
that refer to the removed primitives, and make the model learn to generate the full sketches.

State-of-the-art methods [6, 13, 18, 24] formulate auto-completion through a combination of primitive
and constraint generation models, both of which operate in an autoregressive fashion, with the
constraint model conditioned on and referring (by pointers [23]) to the generated primitives. Since
these works use diverse sketch encodings and have no publicly released code at submission time, for
fair comparison, we implement the autoregressive baseline with our sketch encoding (Sec. 4.1).

Fig. 6 compares our method with autoregressive baseline under various primitive mask ratios: our
method has superior primitive and constraint accuracy than the autoregressive baseline at almost all
mask ratios. This difference confirms that since our method completes sketches concept-by-concept
instead of primitive-by-primitive, more meaningful structures are likely to be generated. Our model
also gains advantage by taking primitives and constraints together as input and generating primitives
and constraints simultaneously, while in comparison the autoregressive baseline separates generation
in two steps (primitives followed by constraints). Indeed, in practice CAD designers rarely finish all
primitives first before supplementing the constraints, but rather apply constraints on partial primitives
immediately whenever they form a design intent. Fig. 5 shows how our approach interprets the partial
inputs and completes with modular concepts (see supplementary for more examples); in comparison,
the autoregressive baseline does not provide such interpretable or regular completions.

6.3 Ablation study

To evaluate the impact of different loss terms of the induction objective (Sec. 5), we train several
models in the absence of these losses respectively on the auto-encoding task. The results are shown
in Table. 1. We see that removing the binary costs Cbry from reconstruction loss results in significant
drop of constraint reconstruction, showing its necessity for constraint reference learning. Remov-
ing sharp reference loss Lsharp similarly fails constraint reference learning, although modularity
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enhancement bias loss makes all constraint references inside concepts. Removing the modularity
enhancement bias loss Lbias only results in a slight drop in reconstruction quality but a significant
drop in modularity, since without it cross-concept reference through arguments is more likely and
therefore modularity suffers. We provide more ablation tests on hyper parameters like the numbers of
concept queries kqry and arguments karg in the supplementary.

7 Conclusion

CAD sketch concepts are meta-structures containing primitives and constraints that define modular
sub-graphs and capture design intents. By formulating the sketch concepts as program libraries of
a DSL, we present an end-to-end approach for discovering CAD sketch concepts through library
induction learning. Key to our approach are the implicit-explicit representation of concepts and the
separated structure generation and parameter instantiation for concept generation, which together
enable the end-to-end training under self-supervised induction objectives. By training on large-scale
sketch dataset, our approach enables the discovery of repetitive and modular concepts from raw
sketches, and more structured and interpretable auto-completion than baseline autoregressive models.

Limitations and future work Design intents can be hierarchical [10], meaning that higher order
meta-structures can be built out of lower order ones. In this sense, our framework only addresses
the first order library induction, and should be extended for higher order library learning; toward
this goal, we believe a progressive approach like [5] can be used with our framework as the one-step
induction. In addition, similar strategies of end-to-end induction learning can be applied to constraint
graphs involving 3D CAD operations or even more general programs in other domains, as long as
they have similar declarative and parametric structures as sketch graphs.
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A Supplementary for “Discovering Design Concepts for CAD Sketches”

A.1 The complete list of L0 types

We provide the complete list of L0 types in List 2. These types are constructed based on the given
data types from the SketchGraphs dataset [17]. Note that in the current implementation we do
not distinguish sub-primitive references that point to different parts of a primitive, but rely on the
predicted geometric closeness of primitive parts to tell them in the post-process, as we find the
geometric predictions are generally quite accurate for this purpose. On the other hand, we note that
the extension of references into primitive parts can be trivially achieved by turning primitives into
functions and augmenting them with arguments (similar to how we model constraints), such that each
argument corresponds to a primitive part; the constraint references can then pinpoint to primitive
parts through argument passing (Sec. 4.2).

List 2: The complete list of L0 types considered in this work.
// Basic data types
Construction, Length, Angle, Coord, Ref
// L0 primitive types
Line → bdash: Construction, cstart_x, cstart_y, cend_x, cend_y : Coord
Circle → bdash: Construction, ccenter_x, ccenter_y : Coord, lradius : Length
Point → bdash: Construction, cx, cy : Coord
Arc → bdash: Construction, ccenter_x, ccenter_y : Coord, lradius : Length , astart, aend : Angle
// L0 constraint types
Coincident → λ(r1, r2 : Ref).{}
Distance → λ(r1, r2 : Ref).{ldist : Length}
Horizontal → λ(r1 : Ref).{}
Parallel → λ(r1, r2 : Ref).{}
Vertical → λ(r1 : Ref).{}
Tangent → λ(r1, r2 : Ref).{}
Length → λ(r1 : Ref).{ldist : Length}
Perpendicular → λ(r1, r2 : Ref).{}
Equal → λ(r1, r2 : Ref).{}
Diameter → λ(r1 : Ref).{ldist : Length}
Radius → λ(r1 : Ref).{ldist : Length}
Angle → λ(r1, r2 : Ref).{aang : Angle}
Concentric → λ(r1, r2 : Ref).{}
Normal → λ(r1, r2 : Ref).{}

A.2 Implementation details

Sketch encoding format In Sec. 4 we described how sketches are encoded to allow network learning;
here we present more implementation details.

We encode the input sketch S as a series of primitive tokens followed by a series of constraint tokens,
with these tokens supplemented by learned positional encoding according to their indices in this
sequence (Sec. 4.1). We additionally insert learnable START, END and NEW tokens at the front of the
sequence, the end of the sequence, as well as between every encoded primitive/constraint respectively,
to produce the complete sequence.

Each primitive is represented by two consecutive tokens: a L0 type token and a parameter token. The
L0 type of primitive is encoded by a 256-dim embedding, obtained by an embedding layer denoted
as enctype. The parameters of a primitive are encoded in the parameter token; compared with using
different numbers of tokens for different primitive types that previous autoregressive baselines do
[6, 13, 18], our one-token parameter encoding allows straightforward matching with a target primitive
even if the predicted primitive type does not match the target, which simplifies training. In particular,
we use a schema shown in Fig. 7 to encode the parameter values, where each basic data type is
represented by a 14-dim code that is obtained by embedding the quantized parameter value, and
all slots of a specific primitive type are used while the rest slots are set zero. To represent that the
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Line Point Circle Arc

bdash csx csy cex cey bdash cx cy bdash cx cy lrad bdash cx cy lrad astart aend

Figure 7: Parameter code schema. A parameter code contains 18 tokens, each of 14 dims, that are
concatenated and zero-padded to 256 dims. For a particular primitive type, only tokens corresponding
to the specified type are used in the parameter code, the rest tokens are reset to zero. We did not
allocate slots for constraint parameters in the current implementation; in comparison, previous works
[13, 18] simply omit constraints with parameters.

resultant parameter token belongs to a specific primitive type, we augment parameter token with the
type token by summing the two vectors to produce the final parameter token (Sec. 4.1).

Each constraint is represented by a type token and several reference tokens. The constraint type token
is obtained through the same embedding layer enctype as primitives. To encode a reference, we use a
256-dim embedding to encode the primitive index in this expanded sequence, obtained through the
embedding layer encref . We omit constraint parameters in the current implementation, and defer
their inference to post-processing according to the positions of predicted primitives; in comparison,
most previous works [13, 18] have simply skipped constraint types with parameters.

Sketch parameter decoding decparam() has a mirrored structure of encparam(). It takes a latent
parameter code as input and decodes it into a 256-dim code (Fig. 7), which contains several segments
corresponding to different primitive types. When doing type casting (Sec. 5), the segment corre-
sponding to the target type is taken for parameter decoding. Each primitive property is represented
by a 14-dim embedding code, from which a quantized property value is recovered by an inverse-
embedding layer; during this inverse-embedding process, the logits are processed by argmax to query
the quantized value. Following previous works [6, 13, 18], we always work with quantized attribute
values as categorical variables during network training and inference.

Normalization, augmentation and quantization We normalize all sketches inside a 2× 2 square
centered at the origin, and remove duplicated sketches by rasterizing into 128× 128 binary valued
images and removing those with the same images. We apply random shrinking augmentation with
scaling factors of 0.5 ∼ 0.8. The continuous basic data types (List 2) are uniformly quantized; in
particular, we assign 30 bins for angle, 20 bins for length and 80 bins for coordinate.

Network and training details The detection network is a transformer encoder-decoder network,
with the encoder/decoder having 12 layers, 8 attention heads and latent dimension of 256.

The structure generation network takes a library code q′ ∈ L1 and generates the L0 type elements [t0i ]
within and a matrix representing the composition RT1 of [t0i ] and arguments. Specifically, the 256-dim
library code q′ first passes through an MLP4 of 3 layers to expand to kL0 × 256 dims, i.e. kL0 codes
representing [t0i ] elements. Then each code passes through another MLP of 3 layers (i.e. dectype)
to output the discrete probabilities of L0 types that t0i assumes. To generate the composition matrix
RT1 , we use another MLP of 5 layers to expand the library code to a (2kL0+karg)× (kL0+karg)
matrix and apply softmax on each row, as detailed in Sec. 4.2.

The parameter network generates parameters to instantiate concepts. It first expands each of the
kqry concept instance codes [qi] into kL0 parameter latent codes, which are further added with the
corresponding parameter type embeddings obtained from structure generation network and fed into
a transformer decoder to generate explicit parameters. The transformer decoder here has the same
hyper parameters as the concept detection decoder (i.e. 12 layers, 8 attention heads, and 256 latent
dimension). The decoder transforms each group of kL0 latent parameter codes by cross-attending
to contextualized input sequences [e′

t0i
], and finally maps them to parameter tokens as described in

Fig. 7 through decparam, which are further decoded into probabilities over quantized basic data types
by corresponding inverse embedding layers.

We implement all modules in Pytorch, and use the Adam optimizer with a learning rate of 10−4 to
train the network for 160 epochs on 4 V100 GPUs, which takes 2 days to complete.

4Unless otherwise specified, all MLPs used in this paper have uniform hidden dimensions as the input
dimension and ReLU activation after each hidden linear layer.
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Library size, EMA code update and dead code revival In our experiments, we use a library of
1000 candidate concepts for L1. We follow [16] to replace the first term of concept quantization loss
(i.e. ||sg(qi)− q′

i|| ) with exponential moving average (EMA) updates of q′ ∈ L1. Specifically, for
each code q′

i, we define two accumulated variables ni ≥ 0 and mi ∈ Rd, which are initialized as
1 and a random unit vector, respectively. They are later updated in each gradient descent iteration
following the rules:

ni := γni + (1− γ)Ni (8)

mi := γmi + (1− γ)
∑
j

qi,j (9)

q′
i :=

mi

ni
(10)

where {qi,j} are Ni detection queries that select q′
i as the closet concept prototype in this iteration.

We set the decay rate γ = 0.99 and the commitment cost coefficient β = 1 in all our experiments.

In addition, we find that the concept quantization process may suffer from codebook collapse where
all [qi] select to few codes of L1, which impairs the capability of the model. To solve this problem,
in the training process we use dead-code revival [16] to periodically (every 100 mini-batches) find an
unused code in L1 and replace it with the q who has farthest distance to its closest code q′.

A.3 Autoregressive baseline implementation detail

Following [24, 13, 18], the autoregressive baseline contains two modules, the primitive model that
generates primitives sequentially and the constraint model that takes primitives as input and generates
constraints sequentially. The primitive model is an autoregressive transformer decoder of 12 layers, 8
attention heads and latent dimension 256. The constraint model is a transformer encoder-decoder,
where the encoder contextualizes input primitives, and the decoder is an autoregressive model
generating constraints. Constraint reference to primitives is implemented by computing dot product
correlation between the generated reference token and contextualized primitive tokens produced by
the encoder, following the Pointer Network design [23]. The constraint model encoder/decoder have
the same hyper-parameters as the primitive model.

A.4 More results

We present more results on design intent interpretation and auto completion. In Fig. 8, we show
more results of how raw sketches are parsed with learned concepts, where primitives are colored
according to their encapsulating concepts, and constraint graphs are visualized to show the modular
concepts. In Fig. 9 we show more such design intent interpretation results without constraint graphs.
Fig. 10 presents more auto-completion results, where again we compare with baseline autoregressive
approach and demonstrate better interpretability and more regular completions.

A.5 Concept library analysis

Fig. 11(a) shows the frequency of how often our learned library concepts are used in the test dataset.
The distribution shows a long-tail pattern, which is expected because the diversity of sketches
demands a wealth of modular sketch concepts that individually may not be used extensively. We
provide more concrete concepts and corresponding sketches containing these concepts in Fig. 12.
These concepts are arranged according to appearance frequency (from high to low) as marked with
red points in Fig. 11(a). The most frequently used concepts are rectangles with different constraint
variants due to their high abundance within regular sketches. Besides, concepts with simple structures,
e.g. few lines connected together by coincidence, are generally more frequently used than those with
complex structures, as the simple structures are more flexible and can fit in diverse sketches.

Fig. 11(b) shows the complexity of learned library concepts in terms of how many L0 instances
are contained in a concept. We can see that there are a small number of degenerate concepts with
empty L0 instances and trivial concepts with only one L0 instances. The empty concepts serve as
placeholder for filling up the gaps between small sketches and the maximal graph of kqry concepts.
The trivial concepts exist because we always convert a raw sketch into a set of L1 concepts, and for
those L0 elements of the raw sketch that do not fit into any modular concept, they will be encapsulated
with such trivial L1 concepts for the sake of complete reconstruction.
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Figure 8: Design intent parsing. Each example shows the input raw sketch and corresponding
constraint graph (in black), as well as our interpreted sketch made of modular concepts and corre-
sponding modular constraint graph, where primitives and constraints are colored according to their
encapsulating concepts.
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Figure 9: Design intent parsing without showing the constraint graphs. In each sketch example, L0

primitives of the same color belong to the same sketch concept.
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Figure 10: More results of auto-completion. Each example shows the input partial sketch (black)
and groundtruth completion (red), result of the autoregressive baseline, and our result (colored by
concepts). Our completion results show better interpretability and regularity.
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(a) (b)
Figure 11: Statistics about the learned library concepts. (a) Library frequency distribution. The
horizontal axis shows the 1000 L1 library concepts learned and sorted according to their frequencies
in the test dataset. The vertical axis shows the frequency value in log-scale. The majority of learned
concepts have stable but not very high occurrence frequencies, meaning they follow a long-tail
distribution as expected. Concepts denoted by red points on the curve are visualized in Fig. 12. (b)
Library complexity histogram. The horizontal axis is the number of L0 instances contained in a
concept, and the vertical axis is the number of concepts of a specific complexity. We can see that
degenerate (i.e. empty) or trivial (i.e. size 1) concepts are rare among the whole learned library.

A.6 Parameter refinement with constraint solver

The errors in generated primitive parameters (e.g. due to quantization of basic data types) can be
mitigated by applying constraints with a constraint solver provided by OnShape [15]. In Fig. 13, we
show examples of sketches before and after refining primitive parameters with constraint solver.

A.7 More ablation results

kqry Primitive Constraint Modular(%)

5 0.994 0.766 50.8
6 0.994 0.808 36.0
8 0.991 0.845 32.6
10 0.998 0.894 15.9
12 0.999 0.918 14.9

Table 2: Query number kqry ablation. F-scores
are reported for primitives and constraints.

karg Primitive Constraint Modular(%)

1 0.993 0.666 52.6
2 0.993 0.766 50.8
3 0.990 0.7577 18.5
4 0.994 0.776 7.1

Table 3: Argument number karg ablation. F-
scores are reported for primitives and constraints.

L1 size Primitive Constraint Modular(%)

50 0.970 0.581 48.1
100 0.980 0.600 48.8
500 0.989 0.735 49.2
1000 0.994 0.766 50.8
2000 0.995 0.779 50.6

Table 4: L1 library size ablation. F-scores are reported for primitives and constraints.

To evaluate the impact of hyper parameters such as the number of concept queries kqry, arguments
karg and library size L1, we train our model under different kqry, karg and L1 sizes on the auto-
encoding design intent interpretation task.

When changing kqry, we also adjust kL0 the number of L0 elements each concept contains, so that
the total number of generated L0 elements, i.e. kqry × kL0 , is unchanged. The evaluation results on
adjusting kqry, karg, L1 are shown in Table 2, Table 3 and Table 4 respectively.
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Figure 12: Examples of learned library concepts and their corresponding sketch instances. The
concepts are sorted by their occurrence frequency (high to low) in the test set, and correspond to the
red dots marked on the distribution curve of Fig. 11.
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Figure 13: Parameter refinement with constraint solver. Generated sketches have parameter
inaccuracies (upper row); constraint solver refines the sketches by applying generated constraints and
fitting the primitives together properly (lower row).

kqry = 10

kqry = 8

kqry = 6

kqry = 5

Figure 14: Design intent interpretation trained with different concept query numbers kqry.
Larger kqry leads to less modular concepts.

20



karg = 4

karg = 3

karg = 2

Figure 15: Design intent interpretation trained with different argument numbers karg. Larger
karg leads to less modular concepts.

From Table 2 we can see that adding more concept queries makes the model more expressive and
flexible, demonstrated as the increasing constraint F-scores; on the other hand, this comes with a cost
of hurting modularity, as a sketch can be decomposed into more granular components.

From Table 3 we see that adding more arguments karg than default 2 does not result in a significant
improvement in constraint F-score, but leads to a significant decrease in modularity, suggesting the
current default argument number is sufficient. On the other hand, decreasing the number of arguments
leads to a significant drop in constraint F-score but does not achieve obviously higher modularity.

We visualize examples of design intent interpretation for different kqry and karg in Fig. 14 and Fig. 15
respectively, to give an intuitive sense of the above numeric results especially on modularity.

From Table 4 we can see that adding more L1 library makes the model more expressive and flexible,
showing increasing constraint F-scores. However, such improvement becomes marginal when more
libraries are introduced, as the newly introduced libraries are mainly used to capture structures that
rarely appear and have little impact on the overall results (intuitively, they mainly continue the fall-off
trend of far-right tail regions of the frequency distribution shown in Fig. 11(a)). On the other hand,
the modularity maintains at roughly the same level throughout the changes over library size.

A.8 Image-conditioned generation

We extend our model to image-conditioned generation, where we are interested in accurately recover-
ing a parametric sketch from an image of hand-drawn sketch. For comparison, we also extend the
auto-regressive baseline to this image-conditioned generation.

Following [13, 18], we use a ViT style encoder to condition the generation on images. Specifically,
the input sketch image of size 128× 128 is partitioned into non-overlapping square patches of size
16× 16. The image patches are flattened and pass through an MLP of 3 layers to produce a sequence
of 64 image tokens (each of dimension 256), and then feed into a transformer encoder to produce
contextualized image embeddings that the detection decoder cross-attends to. For autoregressive
baseline, we similarly augment the primitive model with such an image encoder and use cross-
attention to image tokens in the autoregressive primitive decoder. The ViT style image encoder used
here has the same hyper parameters as the other transformer modules discussed above (i.e. 12 layers,
8 attention heads, 256 latent dimension).

We train our model with learning rate of 3× 10−4 for 200 epochs and the autoregressive baseline
with the same learning rate for 400 epoch to convergence. We used the xkcd packages in mathplotlib
to simulate sketches of hand-drawn style.
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Figure 16: Image conditioned generation. Each example shows the input sketch image, the
reconstruction result by autoregressive baseline, and our result.

Config Primitive Constraint

Autoregressive 0.575 0.301
Ours 0.711 0.368

Table 5: Image-conditioned generation. F-scores are reported for primitives and constraints.

We provide quantitative evaluation in Table 5 and visual comparison in Fig. 16, both showing that our
model has superior performance than the autoregressive baseline, which again can be attributed to the
more regular generation through sketch concept composition.

A.9 Experiment on “CAD as Language” dataset

We also conduct preliminary experiments of our method on the dataset of [6], which comprises of
millions of CAD sketches retrieved from OnShape [15]; in comparison, the SketchGraphs dataset
[17] on which we have done the other experiments is similarly collected from OnShape but has a
smaller scale. We filter the dataset by removing trivial or semantically ambiguous sketches and
confine the sketch complexity such that the total number of primitives and constraints is within
[20, 90]. In the end, we obtain about 2.5 million sketches and use 2.3 millions for training and the
rest for testing. In comparison, there are about 1 million samples from SketchGraphs dataset used in
the other experiments, where the maximum sketch graph size is 50 (Sec. 6).

To accommodate the increased complexity of this dataset, we increase the query number kqry to
6, the L1 library size to 15, and leave the rest hyperparameters unchanged. Examples of learned
libraries and corresponding sketches are presented in Fig. 17. Examples of design intent parsing
results are given in Fig. 18. We can see that our method obtains new modular concepts and parses
more complex sketches; these results show that our framework works similarly on this new dataset.
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Figure 17: Examples of library concepts learned from the CAD as Language dataset [6] and
their corresponding sketch instances. Different instances of the same library are highlighted in
different colors.

A.10 Broader impact

This work potentially improves the efficiency of CAD sketch design, which however does not replace
other critical procedures of CAD. For example, the discovered concepts do not necessarily meet
structure safety constraints, and should be subject to checking and validation procedures according to
specific applications. The general methodology of program library induction presented in this work
facilitates more structured and interpretable machine learning, which may enhance human and AI
interaction but has no direct negative social impacts.
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Figure 18: Design intent parsing learned on the CAD as Language dataset [6]. Each example
shows the input raw sketch and corresponding constraint graph (in black), as well as our interpreted
sketch made of modular concepts and corresponding modular constraint graph, where primitives and
constraints are colored according to their encapsulating concepts.
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