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Fig. 1. ComplexGen for CAD reconstruction from point clouds. Given an input point cloud, ComplexGen recovers corners, curves and patches
simultaneously along with their mutual topology constraints, which enables more complete, regularized and structured CAD reconstruction in the boundary
representation (B-Rep). For each example, the input points, the reconstructed corners (yellow) and curves (blue) and the full B-Rep models (surface patched
randomly colored) are shown. The input points for (c) are corrupted by noise and those for (d) are only partial.

We view the reconstruction of CAD models in the boundary representation

(B-Rep) as the detection of geometric primitives of different orders, i.e. , ver-
tices, edges and surface patches, and the correspondence of primitives, which

are holistically modeled as a chain complex, and show that by modeling such

comprehensive structures more complete and regularized reconstructions

can be achieved. We solve the complex generation problem in two steps.

First, we propose a novel neural framework that consists of a sparse CNN

encoder for input point cloud processing and a tri-path transformer decoder

for generating geometric primitives and their mutual relationships with

estimated probabilities. Second, given the probabilistic structure predicted

by the neural network, we recover a definite B-Rep chain complex by solving

a global optimization maximizing the likelihood under structural validness

constraints and applying geometric refinements. Extensive tests on large

scale CAD datasets demonstrate that the modeling of B-Rep chain complex

structure enables more accurate detection for learning and more constrained

reconstruction for optimization, leading to structurally more faithful and

complete CAD B-Rep models than previous results.
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1 INTRODUCTION
Reconstructing a concise and structured CAD representation from

an unstructured point cloud is a fundamental problem, commonly

known as reverse engineering with a long history of extensive re-

search and commercial applications [3D Systems Inc. 2021; Ansys

Inc. 2021]. To this end, previous works typically try to segment

the input point cloud into regions and fit them with geometric

primitives of different types and parameters. For example, recent

learning-based methods segment input points into non-overlapping

regions and fit them with typed primitive surface patches [Li et al.

2019; Sharma et al. 2020; Yan et al. 2021], or detect sharp corner and

curves from which a wireframe is connected [Liu et al. 2021; Wang

et al. 2020]. Despite the significantly improved reconstruction accu-

racy over heuristic approaches for respective geometric primitives,

the simultaneous reconstruction of patches, curves and corners is

not addressed by these works, leading to incomplete reconstruc-

tions. Based on such incomplete reconstructions, it is nontrivial

to establish a consistent structure with conforming elements and

proper topology that is desirable for CAD models.
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In this paper, we present the ComplexGen framework that gener-

ates complete structures consisting of primitives and their explicit

topology relationships comprehensively. The modeling of complete

structures is not only a desirable target by itself, but also enables

more robust CAD reconstruction. Specifically in our framework,

the explicit generation of topology and geometry effectively di-

vides the task into two sub-problems: the detection of elements

and their topology, as well as the regression of their geometric de-

tails. The division brings several benefits. First, the sub-tasks are

more amenable to deep learning as standard categorical or regres-

sion tasks, where the topology reconstruction is categorical and

the geometry embedding is regression. Second, the combination of

topology and geometry provides complementary information for

more constrained CAD reconstruction. In particular, the explicit

modeling of topology allows us to introduce constraints that ensure

topological validity and result in more complete reconstructions.

To model such a comprehensive structure, we take the boundary

representation (B-Rep) as the basic structure, which is fundamental

for CAD applications [Hoffmann 1989]. The B-Rep structure consists

of elements of different orders, i.e. , vertices, edges and faces, and

the topology among the elements. We show that the B-Rep defines

a chain complex [Hatcher 2002] that reveals structural constraints,

e.g. , the boundary curves of a face form closed loops, which must

be satisfied for structurally valid CAD model reconstruction.

To generate a B-Rep chain complex from a point cloud requires

the detection of geometric primitives of different orders and the

reasoning of their topology relationships, which we address with

a hybrid approach (Fig. 2). First, we design ComplexNet, a neural

network for learning to generate B-Rep structures from point clouds.

In ComplexNet, we use a sparse CNN to extract spatial features

from the input point cloud and three paths of transformer decoder

networks to output the three groups of primitive elements, including

their shapes and geometric types (circles, planes, etc. ), and their

mutual topology defined as adjacency matrices. We connect the

three element generation paths throughout the decoder layers, to

enable mutual communication and facilitate the emergence of a

consistent B-Rep model. Second, given the network predicted B-Rep

structure, which is imprecise and probabilistic in nature, we extract

a precise and valid B-Rep model through global optimization that

involves combinatorial valid topology extraction and constrained

geometric fitting.

The modeling of holistic B-Rep chain complex structures enables

more accurate detection and topology reconstruction in the first

stage of network prediction (Sec. 6.3), and allows to formulate better

constrained global optimization problems where diverse conditions

like the face boundary loop closedness, edge manifoldness, cylin-

der/circle perpendicularity, etc. can be applied for more regular and

complete reconstruction (Sec. 5). These enhancements demonstrate

the benefits that structures incorporated by ComplexGen can bring

to CAD reconstruction.

We test our approach on a large scale benchmark from the ABC

dataset [Koch et al. 2019]. Compared with previous methods that

only attack parts of the B-Rep reconstruction, our method recovers

the total B-Rep chain complex structures consistently, with part ac-

curacy comparable to or superior than previous methods. Challeng-

ing tests with noisy and incomplete point clouds also demonstrate

that our joint reasoning of different orders of elements improves

robustness to data corruption.

To summarize, we make the following contributions in this paper:

• CAD reconstruction by B-Rep chain complex generation. We

define a more structured reconstruction task where elements

of different orders and their topology relationships are consid-

ered simultaneously, and show its benefits in recovering more

complete reconstructions.

• A deep neural network for generating the B-Rep chain complex

models. We generate the three groups of elements and their

topology with a tri-path structure that promotes co-occurrence

of consistent elements.

• Neurally guided global reconstruction with enhanced structural

constraints. Given the neural network predicted probabilistic

structure, we solve a tractable global optimization problem to

recover definite CAD B-Rep models with structure validness.

We open-source the code and data to facilitate future research
1
.

2 RELATED WORK
CAD reconstruction. Primitive based CAD reconstruction has crit-

ical industrial applications and therefore an extensive literature

in computer graphics [Berger et al. 2017] and reverse engineer-

ing [Werghi et al. 2002]. While the problem inherently involves

both combinatorial search of geometric primitives and continuous

optimization of data fitting, we roughly categorize the existing ap-

proaches into the traditional methods that focus more on numerical

optimization and the more recent methods that use neural networks

learning data driven priors to overcome the overwhelming complex-

ity, as discussed below.

To fit candidate primitive surface patches to the input shape

discretized as a point cloud or polygonal mesh, early works apply

probabilistic search like RANSAC [Schnabel et al. 2009, 2007] or

solve variational optimizations [Cohen-Steiner et al. 2004; Skrodzki

et al. 2020; Yan et al. 2012] that iterate between primitive fitting and

segmentation. Subsequent works apply global optimization over

structural constraints to enhance the local primitive fitting as well as

the overall model structural regularity [Li et al. 2011; Nan andWonka

2017]. However, the overwhelming combinatorial complexity of

the CAD reconstruction problem makes such approaches prone to

locally optimal solutions.

With the advent of versatile deep learning methods, renewed

efforts have been made to address the CAD reconstruction problem

with data-driven methods. In particular, Li et al. [2019], Sharma et
al. [2020], Yan et al. [2021] and Huang et al. [2021] train point-based
neural networks to assign patch primitive types and parameters

to each input point, which effectively solves the segmentation and

fitting problem in one pass, by learning on large-scale annotated

CAD data sets. Liu et al. [2021] and Wang et al. [2020] instead
reconstruct the wireframes that delineate the different primitive

patches, by first detecting the candidate corners and lines from input

points, and then connecting them into coherent wire frames through

exhaustive enumeration and checking. Nash et al. [2020] focus
on polygonal model reconstruction, and uses an auto-regressive

network to predict the vertices and planar faces iteratively.

1
The repository is available at https://github.com/guohaoxiang/ComplexGen.
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We note that the separation in terms of segmentation and fitting,

as well as the separation of corner, edge and patch reconstruction

into different stages, are sub-optimal by preventing mutual data

exchange. Instead, we propose a holistic B-Rep chain complex rep-

resentation that entails the elements of multiple orders as well as

their topology, and recover such a representation by a unified neural

framework. In addition, our global optimization guided by network

prediction further improves structural regularity and validness with

constraints on topology and geometric fitting, which is missing

from other learning-based methods as they focus on only parts of

the whole B-Rep model and cannot formulate such constraints.

A different approach to CAD reconstruction is to solve the inverse

problems of procedural CAD models. For example, inverse CSG

[Du et al. 2018; Kania et al. 2020; Ren et al. 2021; Sharma et al.

2018] searches for CSG boolean operations and solid primitives

that combine into the target shape; [Ganin et al. 2021; Para et al.

2021; Seff et al. 2021; Willis et al. 2021b; Wu et al. 2021] assume

a “sketch+extrude” procedural model and study the generation of

2D sketches that can be extruded to obtain 3D shapes, by training

on datasets of such modeling sequences [Seff et al. 2020; Willis

et al. 2021c]. While expressive within their scopes, these procedural

models do not cover all CAD operations and have difficultymodeling

e.g. freeform curves and surfaces resulting from blending, beveling,

revolution and other operations (cf. Figs. 1(a), 6(a), 9(b), 10(a), etc. ).
Different from procedural models, B-Rep is a widely used underlying

representation for CAD models. Indeed, with reconstructed B-Rep

models, more advanced reverse engineering tasks like command

sequence reconstruction and editing can be enabled [Cascaval et al.

2021; Jayaraman et al. 2021; Lambourne et al. 2021; Mathur and

Zufferey 2021; Willis et al. 2021a; Xu et al. 2021].

Transformer based detection. The object detection and segmenta-

tion pipeline has recently observed a major shift, from the previous

CNN-based methods that make object proposals relative to anchor

points in the input [He et al. 2017; Redmon et al. 2016; Ren et al.

2017], to the emerging methods that output absolute positions of

detected objects directly by conditioning on the input [Carion et al.

2020], which is also shown effective in 3D [Misra et al. 2021]. Indeed,

the above mentioned learning-based CAD reconstruction methods

[Huang et al. 2021; Li et al. 2019; Liu et al. 2021; Sharma et al. 2020;

Wang et al. 2020; Yan et al. 2021] reflect the traditional scheme of

CNN-based detection, by first classifying the input points as poten-

tial anchors of segments and thenmerging them into groups through

clustering and searching. In contrast, PolyGen [Nash et al. 2020]

employs the transformer backbone to auto-regressively output the

absolute vertex positions and their grouping into faces, which is less

restricted by the input point accuracy. We build on the DETR frame-

work [Carion et al. 2020] to detect each class of elements directly.

However, a naive adaption of the framework does not show consis-

tency across the elements or robust geometric accuracy (Sec. 6.3).

Instead, we model the rich structures of a B-Rep chain complex by

additionally generating its topology, which is shown to improve

the detection accuracy and provide accurate topological structure

of a B-Rep model. Moreover, with our improved network the input

point cloud can be heavily noisy and corrupted, which is common

in CAD reconstruction from scanned data, while our prediction

still leverages the overall structure and remains stable. Finally, our

chain complex structure prediction enables neurally guided global

optimization that finalizes a manifold and complete B-Rep model.

3 CAD MODELS AS B-REP CHAIN COMPLEXES
CAD models are frequently represented in boundary representation

(B-Rep) [Hoffmann 1989; Weiler 1986], which defines the bound-

ary of a solid 3D shape by elements of different orders, like faces,

edges and vertices, that are linked together and geometrically em-

bedded into the 3D space by primitive types for surfaces (e.g. , plane,
sphere, cylinder) and curves (e.g. , line, circle, spline). The separate
and explicit representation of topology and geometry by B-Rep is

originally designed to facilitate modeling and overcome geomet-

ric inaccuracies [Weiler 1986]. In this section, we show that B-Rep

naturally admits a chain complex structure with computable valid-

ity constraints. We present the B-Rep chain complex formulation

and computational implementation, and give an overview of its

generation from a point cloud.

3.1 B-Rep Chain Complex
We denote a B-Rep model of order 3 as C = (𝑉 , 𝐸, 𝐹, 𝜕,P) with
0th-order vertices 𝑉 = {𝑣𝑖 }, 1st-order curved edges 𝐸 = {𝑒𝑖 } that
may or may not be closed, and 2nd-order curved faces 𝐹 = {𝑓𝑖 }; the
elements of different orders are connected by the graded boundary

operator 𝜕𝑛 , 𝑛 = 1, 2. Therefore, 𝜕2 𝑓𝑖 ⊂ 𝐸 gives the edges which

define the boundary of face 𝑓𝑖 , and 𝜕1𝑒𝑖 ⊂ 𝑉 gives the endpoint

vertices of the edge 𝑒𝑖 .

Each element set generates a vector space, i.e., F = {∑𝑖 𝜆𝑖 𝑓𝑖 |𝜆𝑖 ∈
Z, 𝑓𝑖 ∈ 𝐹 } and similarly for E,V. When the elements are oriented,

the boundary operators define linear maps between the spaces,

i.e. , 𝜕2 : F → E with basis transform 𝜕2 𝑓𝑖 =
∑
𝑗 𝜆𝑖, 𝑗𝑒 𝑗 , where

𝜆𝑖, 𝑗 ∈ {0,±1} denotes whether the orientation of the face 𝑓𝑖 induces

positive or negative orientation of its boundary edge 𝑒𝑖, 𝑗 , or 0 for

a non-adjacent edge. Similar definition applies to 𝜕1 : E→ V. The
graded vector spaces of elements and boundary operators form a

chain complex [Hatcher 2002]:

F
𝜕2−−→ E 𝜕1−−→ V

with the property 𝜕1◦𝜕2 = 0. Intuitively the property establishes that

for each B-Rep face, its associated edges form closed loops by joining

heads with tails. A similar treatment of B-Rep as chain complexes

is discussed in [DiCarlo et al. 2014]; however, our formulation of

constraints (Eqs. (1)-(3)) for reconstruction is novel.

The above topological structure is further augmented with geo-

metric data P that associates primitive shapes to each element. To

accommodate available datasets, we restrict to the following types

of surfaces: plane, cylinder, torus, B-spline, cone, sphere, and the fol-

lowing types of curves: line, circle, B-spline, ellipse. For a primitive

type, there are parameters defining its geometry, as well as proper-

ties such as if an edge curve is open or closed, and if a face patch is

open or closed. The set of geometric primitives considered here is

inline with [Sharma et al. 2020] and larger than many other works

[Li et al. 2019; Liu et al. 2021; Wang et al. 2020].

Throughout the discussions, we use vertex/edge/face and cor-

ner/curve/patch interchangeably for naming the three orders of
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(a) input point cloud (b) network output (c) valid chain complex structure (d) final output

ComplexNet

prediction

Complex

extraction

Geometric

refinement

𝑒18 ∈ Ẽ, 𝑓1, 𝑓8, 𝑓11 ∈ F̃
(𝑒18 ∼ 𝑓1, 𝑓8, 𝑓11 ) ∈ F̃E

𝑒18 ∈ E, 𝑓1, 𝑓8 ∈ F
(𝑒18 ∼ 𝑓1, 𝑓8 ) ∈ FE

Fig. 2. Pipeline of ComplexGen. The point cloud (a) first goes through the ComplexNet with sparse CNN encoder and transformer decoders to generate
primitive elements of different orders, i.e. corners, curves and faces, and their mutual topology. (b) shown here are the elements with validness probabilities
above 0.5; the corners/curves and patches are shifted apart for better visibility. The curve 𝑒18 and its adjacent patches are highlighted as an example of the
predicted topology. (c) the probabilistic B-Rep chain complex then goes through a global optimization that solves for the optimal connection and existence of
elements, where the patches adjacent to 𝑒18 are resolved by removing the redundant 𝑓11. (d) the structure is refined geometrically by fitting each element
shape to input points, mutual constraints and given types; the refined elements collectively constitute a structurally valid B-Rep model.

elements, with the former primarily used for denoting the topologi-

cal aspect and the latter for the geometrical aspect of a B-Rep chain

complex. Frequent notations used are summarized in Table 1.

3.2 Structure Representation and Validness
To encode the elements of a B-Rep chain complex, we use binary vec-

tors of dimensions 𝑁𝑣, 𝑁𝑒 , 𝑁𝑓 for vertices, edges and faces, respec-

tively, i.e. , the binary vectors F ∈ B𝑁𝑓 , E ∈ B𝑁𝑒 ,V ∈ B𝑁𝑣
denote if

any member of a element group exists for a given input shape. The

binary matrices FE ∈ B𝑁𝑓 ×𝑁𝑒 , EV ∈ B𝑁𝑒×𝑁𝑣 , FV ∈ B𝑁𝑓 ×𝑁𝑣
denote

if the corresponding elements are adjacent, thus encoding the bound-

ary operators 𝜕2, 𝜕1 and their composite 𝜕1 ◦ 𝜕2; for non-existent
elements, the corresponding rows and columns in the adjacency

matrices are set zero. Furthermore, the binary vector O ∈ B𝑁𝑒
indi-

cates if an edge is open-ended. Note that by using binary matrices,

we have discarded the orientation information of the elements. This

is to remove the orientation ambiguity for input point cloud with-

out normal vectors (Sec. 4) and to simplify global optimization by

dealing with binary variables only (Sec. 5).

For a valid B-Rep chain complex that represents a closed manifold

CAD model, we naturally arrive at the following properties:∑
𝑖FE[𝑖, 𝑗] = 2E[ 𝑗], 𝑗 ∈ [𝑁𝑒 ] (1)∑
𝑗EV[𝑖, 𝑗] = 2E[𝑖]O[𝑖], 𝑖 ∈ [𝑁𝑒 ] (2)

FE × EV = 2FV (3)

The three equations can be described as follows:

(1) - an edge is adjacent to two faces;

(2) - an open/closed edge has two/zero endpoints;

(3) - a face has closed boundary loops.

(3) is due to the B-Rep chain complex structure satisfying 𝜕1 ◦ 𝜕2 =
0, without assuming orientations of the elements. Among these

equations, both (2) and (3) are quadratic and require special effort

to implement with computational feasibility (cf. Sec. 5).
On the other hand, for a structure satisfying the above three prop-

erties, i.e. , the edge manifoldness and the face boundary closedness,

by induction on edges and faces, we have an algebraic B-Rep struc-

ture representing an edge-manifold surface. Assuming successful

geometric realization of such a topological structure, we arrive at

the following intuitive definition of structure validness for a B-Rep

chain complex.

Table 1. Summary of notations frequently used in the paper.

Notation Description

B Boolean domain {0, 1}
𝑁𝑣/𝑒/𝑓 element numbers for vertices/edges/faces

𝑑 the latent dimension for tri-path decoder

[𝑁 ] the sequence of integers from 1 to 𝑁

C = (𝑉 , 𝐸, 𝐹, 𝜕,P) a B-Rep chain complex with vertices 𝑉 ,

edges 𝐸, faces 𝐹 , boundary operator 𝜕

and geometry embedding P
V, E, F ∈ B𝑁𝑣/𝑒/𝑓

validness of generated elements

O ∈ B𝑁𝑒
openness of edges

FE ∈ B𝑁𝑓 ×𝑁𝑒
the adjacency of faces and edges

EV ∈ B𝑁𝑒×𝑁𝑣
the adjacency of edges and vertices

FV ∈ B𝑁𝑓 ×𝑁𝑣
the adjacency of faces and vertices

[S𝑝∈R𝑆×3, S𝑓 ∈R𝑆×𝑑 ] CNN output voxels and features

Q𝑣/𝑒/𝑓 ∈ R𝑁𝑣/𝑒/𝑓 ×𝑑
initial embeddings for generation

G𝑣/𝑒/𝑓 ∈ R𝑑 class embeddings for element groups

𝑀𝑣/𝑒/𝑓 ,𝑚(·),𝑚′ (·) generated elements matched with GT

and forward/backward correspondences

Definition. A B-Rep chain complex C is valid if and only if its
topology satisfies the constraints (1)-(3) and its geometry realizes the
topology with sufficient accuracy.

We propose a hybrid approach that combines deep learning and

neurally guided optimization to solve the problem of valid B-Rep

chain complex reconstruction from point clouds.

3.3 Method Overview
We formulate the problem of CAD reconstruction as B-Rep chain

complex generation: given an unstructured point cloud 𝑃 = {p𝑖 ∈
R3} that captures the shape of the CAD model, we generate the

chain complex C by detecting the primitive vertices V, edges E
and faces F, their mutual relationships FE, EV, FV, and their spatial

embeddings through geometric primitives P.

To obtain even a rough collection of geometric primitives and

their relationships from an unstructured point cloud is a challenging

task. We design the ComplexNet neural network to parse the point

cloud with sparse CNN and reconstruct a whole complex through

ACM Trans. Graph., Vol. 41, No. 4, Article 129. Publication date: July 2022.
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𝑡

H𝑖+1
𝑡
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H𝑖
𝑡

H𝑖+1
𝑡

Q𝑡

Ṽ, P̃𝑣 Ẽ, P̃𝑒 , T̃𝑒 , Õ F̃, P̃𝑓 , T̃𝑓 , Ũ

F̃V

ẼV F̃E

(a) overall network architecture (b) operations between two layers of decoder

Fig. 3. ComplexNet structure. ComplexNet contains a sparse CNN encoder that extracts features from the input 3D points discretized into sparse voxels and
three transformer decoders that generate vertex corners, edge curves and face patches respectively. The tri-path decoder interchanges data across different
element groups throughout the layers to enable the emergence of a consistent B-Rep chain complex structure. ComplexNet is trained with unary loss terms
applied on Ṽ, Ẽ, F̃, etc. and binary loss terms applied on F̃V, ẼV, F̃E, which measure the differences from GT primitives and their mutual topology, respectively.
On the right, the specific circuit containing attention modules between two layers of the tri-path decoder is shown (cf. (4)-(7)).

three paths of transformer decoders generating the elements and

their mutual topology relationships (Fig. 2(a)-(b) and Fig. 3). In Sec. 4

we present the learning based framework.

While robust to different shape variations, the output of Com-

plexNet is generally not a precise or valid B-Rep chain complex. We

treat the network predictions as a posterior probability on the occur-

rence of primitive elements and their correspondences, and finalize

the extraction of a valid chain complex by global optimization that

maximizes the likelihood while always satisfying topological con-

straints and fits the primitives to both input points and each other

as prescribed by the explicit topology (Fig. 2(b)-(d)). In Sec. 5 we

present the global optimization procedure that enforces the above

structural constraints and extracts valid B-Rep CAD models.

In Sec. 6 we validate the design choices and compare with pre-

vious works through extensive tests on large scale datasets, and

evaluate the robustness of our ComplexGen framework on stress

tests including noisy and partial point clouds.

4 LEARNING TO GENERATE B-REP CHAIN COMPLEXES
We design a deep neural network to analyze the input point cloud

and output a B-Rep chain complex structure. The B-Rep structure is

encoded by vertices Ṽ, edges Ẽ and faces F̃, their mutual relation-

ships F̃E, ẼV, F̃V, and their spatial embeddings through geometric

primitives P. We use the tilde notation to denote the relaxation

of binary variables to real numbers within the unit interval, for

a probabilistic interpretation that guides the global optimization

finalizing valid B-Rep structures (Sec. 5).

4.1 ComplexNet Design
The main challenge with network design is to enable the generation

of a collection of elements with categorical topological relationships.

We use a SparseCNN as the encoder that extracts spatial features

from the point cloud and transformer decoders to output the sets

of corners, curves and patches as well as their mutual topology

(Fig. 3). To facilitate the emergence of consistent structures, we

further introduce mutual communication between element groups

in the transformer decoders, which effectively turns other groups

of elements into a context for generating the current group.

SparseCNN encoder. The encoder is a sparse convolutional neural
network implemented with [Choy et al. 2019]. It takes as input the

point set 𝑃 = {p𝑖 ∈ R3} with the spatial coordinates as 3-channel

features for each point; point normal vectors are optionally provided.

The points are first discretized by a sparse grid of 128
3
resolution

and then convoluted and down-sampled by pooling gradually into

a sparse grid of resolution 16
3
, where each non-empty voxel has

a feature vector of size 𝑑 = 384. We denote the output non-empty

voxels as a pair of grid indices and feature vectors, i.e., S = [S𝑝 ∈
R𝑆×3, S𝑓 ∈ R𝑆×𝑑 ], with 𝑆 the number of non-empty voxels. The

encoder output will be used by the decoder for element generation.

The complete network structure is provided in Appendix A.

Tri-path transformer decoder. As shown in Fig. 3, the decoder

is a transformer-based architecture that decides for each of three

element groups whether an element is valid (or present) in the input

point cloud, and if valid, how it is connected by topology to other

elements and how it embeds geometrically as a primitive shape.

The decoder takes as context S′𝑝 = [PE(S𝑝 [𝑖])]𝑖∈[𝑆 ] ∈ R𝑆×𝑑 and

S𝑓 transformed from the voxels of encoder output, where PE(·) is the
sinusoidal positional encoding [Vaswani et al. 2017] that maps each

of the three grid coordinates into a 128-dim vector and concatenates

them into a 384-dim positional embedding. Following [Carion et al.

2020], the sets of elements are initialized as learned embeddings,

whichwe denote asQ𝑣∈R𝑁𝑣×𝑑 ,Q𝑒∈R𝑁𝑒×𝑑 ,Q𝑓 ∈R𝑁𝑓 ×𝑑
for vertices,

edges and faces, respectively.

Given the context and element embeddings, the transformer de-

coder goes through three paths simultaneously that generate the

three groups of elements representing a consistent B-Rep chain

complex. At each layer of the decoder, an element group first uses

self-attention to exchange data inside the group, and then uses cross-

attention to fetch contextual data from both the encoder output and

the other groups of elements, which facilitates the learning of co-

herent B-Rep structures (cf. Sec. 6.3). To distinguish the different
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element groups during cross-attention, we use the learned group

embeddings [G𝑣,G𝑒 ,G𝑓 ] ∈ R3×𝑑 corresponding to the vertex, edge

and face types, respectively.

The specific update procedure between two decoder layers is

given by (also illustrated in Fig. 3, right):

H𝑖𝑡 += SA

(
LN(H𝑖𝑡 )+Q𝑡 , LN(H𝑖𝑡 )

)
, X𝑡 = LN(H𝑖𝑡 ), (4)

H𝑖𝑡 += CA(X𝑡+Q𝑡 , [X𝑡 ′≠𝑡+Q𝑡 ′+G𝑡 ′ ], [X𝑡 ′≠𝑡 ]) , (5)

H𝑖𝑡 += CA

(
X𝑡+Q𝑡 , S𝑓 +S′𝑝 , S𝑓

)
, (6)

H𝑖+1𝑡 = H𝑖𝑡 + FFN

(
LN(H𝑖𝑡 )

)
, (7)

where 𝑡, 𝑡 ′ ∈ {𝑓 , 𝑒, 𝑣} iterate over the three element types, i.e., ver-

tices, edges and faces, and 0 ≤ 𝑖 ≤ 𝑙−1 iterates over the 𝑙 layers. The
network variables and modules are defined as follows: H𝑖𝑡 ∈ R𝑁𝑡×𝑑

is the latent code at the 𝑖-th layer, initialized as H0

𝑡 = Q𝑡 , X𝑡 are in-
termediate tensors, LN(·) the layer normalization operation, SA(·, ·)
the self-attention module whose first argument is the query/key

tensor and second argument the value tensor, CA(·, ·, ·) the cross
attention module with three arguments corresponding to query, key

and value respectively, and finally FFN(·) the feed-forward module.

The addition between Q𝑡 and G𝑡 is done by broadcasting G𝑡 to the

first 𝑁𝑡 dimensions of Q𝑡 .
We have used a pre-normalization scheme where the latent codes

are first normalized before being processing by attention modules

and FFN ((4),(7)), which has been shown to improve transformer

training stability [Xiong et al. 2020]. We also introduce the posi-

tional encodings and type embeddings for queries and voxels at

each intermediate attention operation ((4),(5),(6)), following and

generalizing the detection framework of [Carion et al. 2020].

Given the final latent codes H𝑙𝑡 for all element groups, we recover

the attributes, including validness, geometric types and embeddings

and topology, with specialized network modules, as presented next.

Validness prediction. The validnessmodule outputs the probability

of an element being existent in the given input shape:

F
𝑣𝑎𝑙
𝑡 : H𝑙𝑡 [𝑖] → Prob ({valid, invalid}) ,

for each of the three element groups. The module is implemented as

three-layer MLPs, with details given in Appendix A. We denote the

resulting validness probability as Ṽ, Ẽ, F̃ for vertices, edges and faces,
respectively. The element validness provides the base probability

for all the rest classification tasks which further predict conditional

probabilities over corresponding categorical domains.

Primitive type prediction. The type modules, also implemented as

three-layer MLPs, classify the geometric primitive types and other

attributes of the elements.

For edges we have

F
𝑡𝑦𝑝𝑒
𝑒 : H𝑙𝑒 [𝑖] → Prob ({line, circle, B-spline, ellipse})

F
𝑜𝑝𝑒𝑛
𝑒 : H𝑙𝑒 [𝑖] → Prob ({open, closed}) ,

which give the probability distributions for curve primitive types

and open/closeness of each edge, respectively. We denote the pre-

dicted edge types as T̃𝑒 , and the openness probability as Õ.

For faces we have

F
𝑡𝑦𝑝𝑒

𝑓
: H𝑙

𝑓
[𝑖] →

Prob({plane, cylinder, torus, B-spline, cone, sphere})

F
𝑜𝑝𝑒𝑛

𝑓
: H𝑙

𝑓
[𝑖] → Prob({u-open, u-closed}),

which give the probability distributions for patch primitive types

and the open/closedness of a patch in one of its parametric dimen-

sions. We denote the predicted face types as T̃𝑓 , and the u-openness
probability as Ũ.
Following the handling of parametric surfaces in [Sharma et al.

2020], a patch instance is u-closed if one of its parameter ranges

forms a closed cyclic domain, examples including cylinder, cone,

surfaces of revolution, torus, sphere, etc. that are closed in one

dimension regarded as the u-dimension. The u-closed label of a

groundtruth patch is used for enumerating the permutation pat-

terns for geometry loss computation during training (Sec. 4.2), and

its prediction is used for closing up the resultant surface patch

during the geometric refinement stage (Sec. 5.2).

Geometry prediction. We generate the explicit geometry of ele-

ments by taking a unified representation for different types of edges

and faces, in contrast to the online algebraic fitting to segmented

points [Li et al. 2019; Sharma et al. 2020].

We define the shape of an edge 𝑒𝑖 as a mapping from the canonical

unit interval [0, 1] to a spatial curve, i.e. , P𝑒 (H𝑙𝑒 [𝑖]) : [0, 1] → R3,
and the shape of a face 𝑓𝑖 as a mapping from the unit square [0, 1]2
to a spatial surface patch, i.e. , P𝑓 (H𝑙𝑓 [𝑖]) : [0, 1]

2 → R3. The mod-

ules P𝑒 ,P𝑓 are implemented as hyper-networks [Ha et al. 2017;

Zhao et al. 2020], where the latent codes of edges and faces are used

to generate their specific three-layer MLPs, which then map the

canonical parameter domains to spatial curves and surfaces. Fig. 4 il-

lustrates the mappings and network details are given in Appendix A.

We discuss the choice of hypernet over an alternative conditioned

MLP for implementing the mappings in the supplemental document.

Each curve is sampled uniformly from the unit interval with 𝐾𝑒
points, and each patch is sampled uniformly with 𝐾𝑓 × 𝐾𝑓 points.
We set 𝐾𝑒 = 30, 𝐾𝑓 = 10 in our implementation, and denote the

sampled point arrays of all elements as P̃𝑒 , P̃𝑓 .
As the corner embedding generates a single point, we use a direct

MLP instead, i.e. , P𝑣 (H𝑙𝑣 [𝑖]) ∈ R3 for a vertex 𝑣𝑖 . The points of all
corners are denoted as P̃𝑣 .
We adopt the explicit geometry generation rather than online

fitting, so that we can use the above unified module for geometry

regression, which accommodates the different parametric forms

(spanning both algebraic surfaces and freeform splines) and simpli-

fies loss computation. In comparison, ParseNet [Sharma et al. 2020]

has to design a specific spline module pretrained to incorporate

freeform surfaces, while [Li et al. 2019; Sharma et al. 2020] solve

nonlinear optimization problems during the network forward pass

for primitive patch fitting excluding splines.

Topology prediction. For modeling topology, three modules F
𝑡𝑜𝑝𝑜

𝑓 𝑒
,

F
𝑡𝑜𝑝𝑜
𝑒𝑣 , F

𝑡𝑜𝑝𝑜

𝑓 𝑣
output the respective probabilistic adjacency matrices.

For example, F
𝑡𝑜𝑝𝑜

𝑓 𝑒
: H𝑙

𝑓
,H𝑙𝑒 → F̃E ∈ [0, 1]𝑁𝑓 ×𝑁𝑒

, by first projecting
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(a) curve embedding

P𝑒 (H𝑙
𝑒 [𝑖 ] )

(b) patch embedding

P𝑓 (H𝑙
𝑓
[𝑖 ] )

Fig. 4. Geometry embedding of curves and patches. Each embedding
module is implemented as a hypernet that takes a latent code of an element
and produces a mapping from the canonical domain (unit interval for curves,
unit square for patches) to the spatial shapes.

each face(edge) element with a linear layer, and then computing

the correlation of each pair of face/edge through their dot product

followed by a sigmoid function 𝜎 , i.e. ,

F
𝑡𝑜𝑝𝑜

𝑓 𝑒
(H𝑙

𝑓
,H𝑙𝑒 ) =

[
𝜎

(
FC𝑓 𝑒

(
H𝑙
𝑓
[𝑖]

)
· FC𝑒 𝑓

(
H𝑙𝑒 [ 𝑗]

))]
𝑖, 𝑗
,

for 𝑖 ∈ [𝑁𝑓 ], 𝑗 ∈ [𝑁𝑒 ]. The F𝑡𝑜𝑝𝑜𝑒𝑣 , F
𝑡𝑜𝑝𝑜

𝑓 𝑣
modules are defined simi-

larly. Such a design captures the pairwise correlation that the dis-

crete topology models. While the topology predictions are fitted to

sparse adjacency matrices, the dot-product formulation provides no

short-cut to introduce imbalance bias.

From ablation studies (Sec. 6.3), it is shown that compared with

an implicit encoding of topology through geometric proximity, the

explicit modeling of topology provides a different source of informa-

tion that complements pure geometrical data to enhance structurally

valid B-Rep reconstruction. For example, topology of cluttered el-

ements is ambiguous through their geometric proximity only, but

can be sharply encoded by the predicted adjacency matrices.

4.2 Loss Functions
The ground truth B-Rep structure contains element sets of diverse

sizes without canonical ordering. Given the predicted element sets,

we compare them with the ground truth data by first building a

matching between corresponding sets and then defining loss func-

tions based on the matched pairs.

Matching. We build a correspondence between the GT elements

and the generated elements by bipartite matching [Kuhn 1955;

Munkres 1957]. The cost matrix for matching is roughly the same as

loss computation, so that the correspondences among consecutive

training iterations are changed gradually to stabilize training.

In particular, for each pair of prediction element 𝑝 and ground

truth element 𝑞, we compute the matching cost as:

𝐶 (𝑝, 𝑞) =
∑︁
𝑐

𝐷𝐾𝐿 (𝑐 (𝑞) | |𝑐 (𝑝)) +𝑤𝑔𝑒𝑜𝐷𝑔𝑒𝑜 (𝑝, 𝑞),

where 𝑐 iterates over all classification tasks applicable to the element

(i.e. , validness, type, curve/patch openness) and computes the prob-

ability distributions, 𝐷𝐾𝐿 the KL divergence measures the negative

log-likelihood of 𝑝 equal to 𝑞 on each task,𝑤𝑔𝑒𝑜 = 300 gives a larger

weight to geometric error as the shapes are normalized into a unit

cube, and 𝐷𝑔𝑒𝑜 ∈ {𝐷𝑣, 𝐷𝑒 , 𝐷 𝑓 } computes the geometric distance

between two elements, as defined next.

For each element group, the matching process divides the gen-

erated elements into two sets, the matched ones 𝑀𝑡 and the un-

matched; we denote the correspondence of matched elements to GT

elements as𝑚(·) and the inverse correspondence to prediction as

𝑚′ (·). We have chosen the element group sizes 𝑁𝑣/𝑒/𝑓 to cover GT

elements for all samples in the dataset (Sec. 6).

Remark. The matching process considers per-element attributes

only for cost computation, while ideally it should also include the

binary topology prediction. However, we note that by taking binary

terms into consideration, the matching task becomes a quadratic as-

signment problem that has no efficient solution [Anstreicher 2003].

Instead of solving an intractable quadratic matching problem dur-

ing each training iteration, the topology loss and tri-path network

structure enable the co-occurrence of consistent elements, as shown

empirically in Sec. 6.3.

Loss terms. The loss functions measure differences from ground-

truth labels in the following aspects: detection validness, primitive

types, geometric regression and topology between every pair of

element groups. Among them, the geometric regression loss mea-

sures distance from ground-truth shapes, and the rest computes

cross entropy from target categorical distributions. We denote the

predicted variables as C̃ with tilde, and the GT complex as C.

Validness. The validness loss encourages the matched elements

of prediction be valid and the rest be invalid. Thus we have the

following binary classification problem for all generated elements:

𝐿𝑣𝑎𝑙 =
1

𝑁𝑣

𝑁𝑣∑︁
𝑖=1

BCE(Ṽ[𝑖], 1𝑖∈𝑀𝑣
) + 1

𝑁𝑒

𝑁𝑒∑︁
𝑖=1

BCE(Ẽ[𝑖], 1𝑖∈𝑀𝑒
)

+ 1

𝑁𝑓

𝑁𝑓∑︁
𝑖=1

BCE(F̃[𝑖], 1𝑖∈𝑀𝑓
),

where BCE(·, ·) computes the binary cross entropy. 1𝑥 is the indica-

tor function that is 1 when 𝑥 is true and 0 otherwise.

Type classification. The primitive type classification loss compares

the types of generated elements with those of the ground truth

elements, for edges and faces. The edges also have the type of being

open/closed, while faces have the type of being u-open/u-closed.

For type classification, we only supervise the matched elements:

𝐿𝑐𝑙𝑠 =
1

|𝑀𝑒 |
∑︁
𝑖∈𝑀𝑒

CE

(
T̃𝑒 [𝑖],T𝑒 [𝑚(𝑖)]

)
+ BCE

(
Õ[𝑖],O[𝑚(𝑖)]

)
+ 1

|𝑀𝑓 |
∑︁
𝑖∈𝑀𝑓

CE

(
T̃𝑓 [𝑖],T𝑓 [𝑚(𝑖)]

)
+ BCE

(
Ũ[𝑖],U[𝑚(𝑖)]

)
,

where CE(·, ·) computes the cross entropy between two probabil-

ity distributions, T denotes the primitive type probabilities, and U
denotes patch u-open/u-closed probabilities.
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Geometry regression. Geometry regression of the generated ele-

ments toward matched GT elements is supervised by:

𝐿𝑔𝑒𝑜 =
1

|𝑀𝑣 |
∑︁
𝑖∈𝑀𝑣

𝐷𝑣

(
P̃𝑣 [𝑖], P𝑣 [𝑚(𝑖)]

)
+ 1

|𝑀𝑒 |
∑︁
𝑖∈𝑀𝑒

𝐷𝑒

(
P̃𝑒 [𝑖], P𝑒 [𝑚(𝑖)]

)
+ 1

|𝑀𝑓 |
∑︁
𝑖∈𝑀𝑓

𝐷 𝑓

(
P̃𝑓 [𝑖], P𝑓 [𝑚(𝑖)]

)
,

where 𝐷𝑣 (p, q) = ∥p − q∥2 computes the squared distance between

two vertices.𝐷𝑒 (·, ·) is the curve distance that chooses the minimum

distance among all sequential 1-1 matches of two linear arrays of

curve points. 𝐷 𝑓 (·, ·) is the patch distance that compares a pair of

two-dimensional arrays of patch points with sequential 1-1 matches

preserving array ordering.

Specifically, for two curves P0, P1 ∈ R𝐾𝑒×3
of length𝐾𝑒 , we define

the edge distance as

𝐷𝑒 (P0, P1) =
1

𝐾𝑒
min

Π
∥P0 − Π(P1)∥2 .

If P1 is an open curve, Π ∈ {rev|·} enumerates the 2 possible ways

of flipping the curve, with reversion by rev or not. If P1 is a closed
curve, Π ∈ {roll𝑖 ◦ (rev|·)} additionally enumerates rolling the curve

point array cyclically by 𝑖 entries, 0 ≤ 𝑖 < 𝐾𝑒 .
For two patches P0, P1 ∈ R𝐾𝑓 ×𝐾𝑓 ×3

each with 𝐾𝑓 × 𝐾𝑓 points,

we define the face distance as

𝐷 𝑓 (P0, P1) =
1

𝐾2

𝑓

min

Π
∥P0 − Π(P1)∥2 .

When P1 is an open patch, Π ∈ {(rev-x|·) ◦ (rev-y|·)} enumerates

all possible flipping of a 2D grid, i.e. reversing (or not) along the x/y

axis in 4 possible ways. On the other hand, when P1 is a closed patch,
Π ∈ {roll-y𝑗 ◦ roll-x𝑖 ◦ (rev-x|·) ◦ (rev-y|·)} additionally enumerates

all possible shifting of a 2D grid, i.e. rolling along the x/y axis for

steps within 𝐾𝑓 .

The reason for using order preserving 1-1 matching distances for

curves and patches is to learn more regular shapes; in comparison,

aggregated metrics like chamfer distance do not penalize shape

irregularity and lead to poor generation quality. A similar distance

is used for regular spline patch regression in [Sharma et al. 2020].

In addition, we prepare the ground-truth patches by regular grid

sampling of their parametric representations, as is done in [Sharma

et al. 2020] for spline regression training.

Topology. Topology prediction is compared with the ground-truth

adjacency topology for the matched elements:

𝐿𝑡𝑜𝑝𝑜 =
1

|𝑀𝑒 | |𝑀𝑣 |
∑︁

𝑖∈𝑀𝑒 , 𝑗∈𝑀𝑣

BCE

(
ẼV[𝑖, 𝑗], EV[𝑚(𝑖),𝑚( 𝑗)]

)
+ 1

|𝑀𝑓 | |𝑀𝑒 |
∑︁

𝑖∈𝑀𝑓 , 𝑗∈𝑀𝑒

BCE

(
F̃E[𝑖, 𝑗], FE[𝑚(𝑖),𝑚( 𝑗)]

)
+ 1

|𝑀𝑓 | |𝑀𝑣 |
∑︁

𝑖∈𝑀𝑓 , 𝑗∈𝑀𝑣

BCE

(
F̃V[𝑖, 𝑗], FV[𝑚(𝑖),𝑚( 𝑗)]

)
.

Total loss function. The final loss function used for training the

whole network is a weighted summation of the above terms:

𝐿 = 𝐿𝑣𝑎𝑙 + 𝐿𝑐𝑙𝑠 +𝑤𝑔𝑒𝑜𝐿𝑔𝑒𝑜 +𝑤𝑡𝑜𝑝𝑜𝐿𝑡𝑜𝑝𝑜 .

Since the models are normalized into unit side-length bounding

boxes, we have used𝑤𝑔𝑒𝑜 = 300 and𝑤𝑡𝑜𝑝𝑜 = 10 for all experiments.

Remark. Due to the full supervision of both geometry and topol-

ogy predictions in this task, we do not include the consistency of

geometry and topology nor the topology constraints ((1)-(3)) into

the objective function. However, we note that these additional tar-

gets can be used for self-supervision when ground-truth labels are

missing on other datasets.

5 NEURALLY GUIDED B-REP RECONSTRUCTION
Given the fuzzy predictions of the geometric elements and their

mutual topology, we apply global optimization to recover both the

primitive geometries and their topology that constitute a valid B-Rep

chain complex. The process is done in two steps: the chain complex

extraction that recovers valid topological structures (Sec. 5.1) and

the geometry refinement that realizes the topological structures and

fitness to input points (Sec. 5.2).

5.1 Chain Complex Extraction
The aim of complex extraction is to recover a structurally valid

manifold B-Rep model as dictated by ((1)-(3)), while obeying the

predictions given by the network on the posterior topology and

geometry as much as possible.

To be precise, we search for the corresponding binary variables

V, E,O, F and FE, EV, FV that represent a valid topological structure

and agree with the predicted likelihoods and geometric proximity

as much as possible.

Denote the predictions in element validness as Ṽ, Ẽ, Õ, F̃, and
their mutual relationships as F̃E, ẼV, F̃V. As the predicted topology

models conditional probability (Sec. 4.1), we multiply the validness

probability to the predicted topology matrices to obtain the true

probabilities of topology:

F̃E[𝑖, 𝑗] := F̃E[𝑖, 𝑗] × F̃[𝑖] × Ẽ[ 𝑗],

and similarly for ẼV, F̃V.
We further compute the geometric proximity of elements that

provides a fitness measure of possible topology connections. Let

𝑑𝑎,𝑏 =
1

|𝑃𝑎 |
∑︁

p𝑎∈𝑃𝑎
min

p𝑏 ∈𝑃𝑏
∥p𝑎 − p𝑏 ∥ (8)

be the average distance between the predicted point sets of two

elements 𝑎, 𝑏, with the order of 𝑎 lower than 𝑏 (e.g. , corner to curve).
We define the fitness score of two elements being connected as

𝑆 (𝑎, 𝑏) = exp

(
−
𝑑2
𝑎,𝑏

𝜖2

)
∈ (0, 1], where 𝜖 = 0.1 controls the fall-off rate

of the fitness score. The adjacency probability matrices computed

purely from geometry proximity are then given by

S𝐹𝐸 =
[
𝑆 (𝑒 𝑗 , 𝑓𝑖 )

]
𝑖, 𝑗
, S𝐸𝑉 =

[
𝑆 (𝑣 𝑗 , 𝑒𝑖 )

]
𝑖, 𝑗
, S𝐹𝑉 =

[
𝑆 (𝑣 𝑗 , 𝑓𝑖 )

]
𝑖, 𝑗
. (9)
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Non-maximum suppression. Before going through a combinatorial

optimization that searches for the valid structure based on network

predictions, we remove some apparently redundant elements by

a simple nonmaximum suppression step that removes duplicate

elements. We define a duplicate element 𝑞 as: 1) it is predicted to be

valid (i.e. its validness ≥ 0.5), and 2) there exists 𝑞′ such that 𝑞′ has
validness ≥ 0.5, the same type as 𝑞, the same topology w.r.t other

element groups as 𝑞, and nearly the same geometry, computed by

their chamfer distance within a given threshold (we use 0.05 for all

experiments). For a duplicate element, we simply set its validity and

corresponding rows and columns in the topology matrices to zero.

Combinatorial optimization. We formulate a binary optimization

problem with linear objectives to extract the complex structure:

max 𝑤𝐹𝑡𝑜𝑝𝑜 + (1 −𝑤)𝐹𝑔𝑒𝑜𝑚 (10)

s.t. (1), (2), (3){
FE[𝑖, 𝑗] ≤ F[𝑖]

(
≤ ∑

𝑗 FE[𝑖, 𝑗]
)
, ∀𝑖, 𝑗

EV[𝑖, 𝑗] ≤ V[ 𝑗] ≤ ∑
𝑘 EV[𝑘, 𝑗], ∀𝑖, 𝑗

where𝑤 = 0.5 is the weight given to the topology fitness objective.

The constraints come from B-Rep manifoldness (Sec. 3) and the

dependency between binary topology terms and unary terms de-

noting the existence of elements. The dependency between binary

variables and unary variables is necessary. Intuitively, for example,

the absence of a face dictates the absence of its adjacency with edges,

and due to Eq. (3) the absence of adjacency with vertices; on the

other hand, when a face exists, it generally requires adjacent edges

and vertices as boundaries, except the singular case of all surface

patches are predicted closed and no edges are predicted existent,

hence the parenthesis in the first inequality constraint above. We

find that all such dependencies can be derived from the constraints

formulated in the above problem, a proof of which is provided in

the supplemental material.

We define the topology objective as

𝐹𝑡𝑜𝑝𝑜 =
∑︁
X
𝑤𝑋

(
2X̃ − 1

)
· X,

whereX ranges over the variables {F, E,V,O, FE, EV, FV}, X̃ over the

corresponding predictions, and · denotes the dot product between
two vectors or matrices. We assign a larger weight 𝑤𝑋 = 10 for

the unary variables {F, E,V,O}, and a unit weight 𝑤𝑋 = 1 for the

binary variables {FE, EV, FV}, to balance their significantly different
numbers of variables. The 2𝑥 − 1 coefficient is to encourage those

variables with likelihood larger than 0.5 to emerge and those less

than 0.5 to turn off.

Similarly we define the geometry fitness objective with proximity

induced adjacency likelihoods as

𝐹𝑔𝑒𝑜𝑚 =
∑︁
X
𝑤𝑋 (2S𝑋 − 1) · X

where X ranges over {FE, EV, FV}, and S𝑋 defined in (9).

The above optimization problem is hard to solve, because of the

large number of binary variables as well as the quadratic constraints

(2), (3). To make the problem more approachable, we reduce the

binary variables significantly by simply removing the candidate ver-

tices/edges/faces with predicted validness less than 0.3, and convert

Algorithm 1: Procedure of geometric refinement

Input: complex with solved topology and predicted

geometric primitives, input points, 𝐾1 = 3, 𝐾2 = 5

Output: geometric primitives conforming to prescribed

topology and input points

// First stage: fitting with spline patches

1 for 𝑖 ∈ [𝐾1] do
2 fit each patch as spline (except plane, sphere) to input

points, curves, and corners;

3 fit each curve to patches and corners;

4 fit each corner to curves and patches;

5 end
// Second stage: fitting with typed primitive patches

6 convert spline patches to typed primitives;

7 for 𝑖 ∈ [𝐾2] do
8 fit each typed patch to input points, curves, and corners;

9 fit each curve to patches and corners;

10 fit each corner to curves and patches;

11 end

the quadratic constraints to linear ones by a trick for binary variables.

The resultant integer linear program (ILP) is much more tractable

and can be solved by state-of-the-art optimizers (we use [Gurobi

Optimization, LLC 2021] in experiments). More details about the

conversion are given in Appendix B. In practice, we set a time limit

of 20 minutes for each ILP problem, and find that all 3k samples

except one have been successfully solved. The only failure case has

low curve validness values truncated to zero by the 0.3 threshold

and when we relax the threshold to 0.1, it can be successfully solved.

5.2 Geometric Refinement
Given the solved structure, we refine the geometry of the elements

by fitting their corresponding typed geometric representations to

input points, as well as constraining their shapes so that the topo-

logical structures are tightly satisfied. Curves (patches) which are

solved (predicted) to be closed are constructed accordingly.

The geometric refinement process consists of iterative applica-

tions of standard surface, curve and point fitting procedures. The

input points and adjacent elements prescribed by topology are the

fitting targets. We give different weights to the targets: 1 for input

points, 5 for adjacent elements and 0.1 for a stabilization term that

prevents the element from drifting too far. Note that only patches

are fitted to the input points, as it is highly ambiguous to find the

proper corresponding points for curves and corners. To obtain the

target points for a patch, we project the input points to their closest

surface patches (initialized by predicted geometry), and filter out

those with distances above a given threshold 0.02 to make the fitting

more robust to inaccurate initialization.

As shown in Alg. 1, we separate the geometric refinement process

into two stages. In the first stage we use spline patches for fitting all

types of primitive patches except plane and sphere, since we find

that the fitting of cone and cylinder is highly sensitive to the normal

vectors of assigned points, while spline fitting does not rely on the
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Fig. 5. Topology provides constraints for geometric fitting. Left: the
cylinder axis ®𝑎 is constrained to be parallel to linear boundary ®𝑙 and perpen-
dicular to the circular boundary 𝑐 . Right: the cone axis ®𝑎 is constrained to
be perpendicular to the circular boundary 𝑐 .

normal vectors. In the second stage, we turn each primitive patch

to its predicted type and apply the iterative fitting process again

with type constraints; the fitted spline patches from the first stage

provide high quality initial estimates of shapes and normal vectors

for challenging primitives like cone and cylinder.

Each fitting problem is solved with standard techniques. For types

like lines, circles, planes, spheres, torus and splines, we use (non-

linear) least square fitting procedures [Schneider and Eberly 2003].

For types with quadratic algebraic equations, we adopt the methods

of [Andrews and Séquin 2013; Li et al. 2019] but apply additional

constraints, e.g. , on cone and cylinder axes, as discussed next.

Topological cues for regularization. For challenging cases like nar-

row patches (see the pink narrow band in Fig. 2 for an example),

traditional approaches that apply direct point cloud fitting become

highly sensitive to outliers. In contrast, our B-Rep representation

provides additional cues for regularization. For example, given a

cylinder patch with four-sided boundary curves, if two curves are

lines and the other two are circles in type, we instantly have that the

axis of the cylinder is parallel to the lines and perpendicular to the

circles. Similarly, for a cone patch, its axis can be determined from

the circular boundary curves. See Fig. 5 for an illustration. Since

the estimation of axes of cones and cylinders is fundamental to

their surface fitting and quite sensitive to estimated point normals

[Andrews and Séquin 2013], such regularization can be very helpful

when the input points are noisy or highly incomplete.

We note that once the topological relationships are present, po-

tentially more geometric constraints can be derived and applied for

regularization. This inference and application of sophisticated con-

straints is generally known as auto-constraint, an important feature

in CAD modeling software [Autodesk Inc. 2021]. Our reconstruc-

tion with explicit and definite topological relationships provides a

foundation for such applications [Li et al. 2011; Mathur and Zufferey

2021; Xu et al. 2021], which we leave as future work to explore.

Model visualization. The optimized B-Repmodel can be converted

to specific formats for CAD software consumption. To visualize

the whole models, we develop a simple procedure that extracts

mesh models from the B-Rep chain complex: we use curve loops

to cut their incident patches triangulated and obtain a collection

of trimmed patches. The final patches, curves and corners form a

mesh model that follows the predicted topology and fits to the input

geometry. Examples of diverse complexities are shown in Figs. 1, 6,

8 and 10 and the supplemental document.

5.3 Structure Validity Assessment
Although results obtained from network predictions inevitably have

degenerate cases, previous works rarely address the question of

whether the result models are valid CAD models, as the results

lack structures to validate on. However, with the separate encoding

of topology and geometry and the guaranteed topology validness

by constraints (Sec. 3), our B-Rep chain complex formulation pro-

vides an approach for assessing the validness of reconstructed CAD

models by checking topology and geometry consistency.

We validate if the final geometric realization sufficiently complies

with the solved topology, by checking if the algebraic adjacency be-

tween elements is met with sufficient geometric accuracy. Precisely,

we compute the corner-to-curve, corner-to-patch, and curve-to-

patch distances through (8) for all adjacent pairs designated by

topology, and compute the percentage of distances exceeding a

given threshold. Empirical results are given in Sec. 6.6.

6 RESULTS AND DISCUSSION
Through extensive ablation studies, comparisons and stress tests

with noisy and missing data, we show that the proposed Complex-

Gen framework that models B-Rep structure holistically achieves

more complete and structured CAD reconstruction.

6.1 Setup
Dataset. Following previous work [Sharma et al. 2020], we build

a dataset using a portion of the ABC dataset [Koch et al. 2019] that

contains 20k models for training and 3k models for testing, with the

same split as [Sharma et al. 2020] for fair comparisons. We apply

data cleaning to remove errors and reduce label ambiguity; details

of the procedure can be found in the supplemental document. We

make the fixed dataset publicly available to facilitate future research.

The B-Rep chain complex structure can be easily obtained for a

sample in the ABC dataset. To this end, different from [Sharma et al.

2020], we also need to extract the corners and curves and the adja-

cency among elements, by cross-referencing the CAD feature file

for element definition and the mesh representation that discretizes

the CAD model for their adjacency.

We use 𝑁𝑣 = 100, 𝑁𝑒 = 150, 𝑁𝑓 = 100 for the three element

groups, which cover all GT elements in the dataset. The input points

have normal vectors for most experiments, except the stress tests

with noisy data where we remove normal vectors to simulate a more

practical and challenging setting.

Network training. We use Adam solver [Kingma and Ba 2015]

with default parameters and a fixed learning rate 𝑙𝑟 = 10
−4

to train

the ComplexNet implemented in PyTorch with batchsize 48 for 500

epochs to convergence, which takes 3 days on 8 Nvidia V100 GPUs.

Runtime. The network inference takes 89 ms. The most time

consuming part is chain complex extraction that solves integer

linear programming, taking 545 seconds on average on the test set.

The geometric refinement step takes 8 seconds on average.

6.2 Evaluation Metrics
To evaluate the reconstruction accuracy of a complete B-Rep chain

complex against ground truth, we come up with a comprehensive
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Fig. 6. Result gallery. Our framework can recover CAD models with complete B-Rep structures from the unstructured input points. Freeform surfaces (a)(e),
smooth junction corners and curves (d) and narrow surface patches (b)(c)(d)(f) can be generated by our framework.

set of metrics measuring the detection accuracy of corners, curves,

patches, the classification accuracy of primitive types, as well as the

topological errors from GT and from validness constraints.

Given the ground-truth structure 𝐶 and the reconstructed struc-

ture 𝐶 , we compute the linear assignment matching for each pair

of element groups by the same procedure as in Sec. 4.2 (albeit us-

ing distance cost only, as the categorical probability distributions

are rounded to discrete values). Denoting the matched prediction

elements as 𝑀𝑡 , the correspondence to GT elements as 𝑚(·) and
the inverse correspondence to prediction as𝑚′ (·), we evaluate the
following metrics.

• Detection accuracy by F-score. We apply a geometric distance

threshold 𝛿 = 0.1 to determine if a pair of matched elements is a

true positive. Then we compute the F-score of the detection as

the harmonic mean of the precision and recall values.

• Type accuracy. For each type classification task (including prim-

itive types and openness of curves and patches), we measure

the type accuracy for matched prediction elements, defined as

1

|𝑀𝑡 |
∑
𝑖∈𝑀𝑡

1
𝑇𝑖=𝑇𝑚 (𝑖 )

, where𝑇𝑖 ,𝑇𝑚 (𝑖 ) are the predicted type and

corresponding GT type, respectively.

• Topology error. Given the GT adjacency matrix FE, we compute

the error of the reconstructed topology as its difference from the

GT matrix, i.e. ,
1

𝑁𝑓 · 𝑁𝑒

∑︁
𝑖∈[𝑁𝑓 ], 𝑗∈[𝑁𝑒 ]

���FE[𝑖, 𝑗] − FE[𝑚′ (𝑖),𝑚′ ( 𝑗)]
���.

The topology errors for FV and EV are computed similarly. Note

that for a GT element pair 𝑖, 𝑗 with either one unmatched to pre-

diction, since the prediction FE cannot be evaluated, the corre-

sponding error is simply count as 1, which avoids the degeneracy

that fewer predictions unfavorably lead to lower errors.

• Topology inconsistency. We evaluate the degree of topology

inconsistency as the absolute residual of the three systems of

equations (1),(2),(3), each normalized by its number of equations.

These metrics are primarily used for ablation study that compares al-

ternative approaches for complex generation, as discussed in Sec. 6.3.
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For comparison with previous works [Li et al. 2019; Sharma et al.

2020; Yan et al. 2021] that focus on patch segmentation, we evaluate

our results against their metrics that measure the accuracy and

coverage of reconstructed surface patches, and propose a patch-to-

patch topology accuracy metric for measuring structural fidelity.

• Residual. The residual error measures how well each generated

patch fits to its target segment points. For matched patches, the

residual is computed as

1

|𝑀𝑓 |
∑︁
𝑖∈𝑀𝑓

1

|𝑆𝑚 (𝑖 ) |
∑︁

p∈𝑆𝑚 (𝑖 )

∥p − proj(p, 𝑃𝑖 )∥,

where 𝑃𝑖 is the predicted patch, 𝑆𝑚 (𝑖 ) the corresponding GT patch

sample points, and proj(·, ·) projects a point onto a surface patch.
• P-coverage. The point coverage measures the percentage of

input points covered by the predicted patches, computed by

1

|𝑃 |
∑︁
p∈𝑃

1∥p−proj(p,{𝑃𝑖 }) ∥<𝜖𝑐𝑜𝑣 ,

where p iterates over input points 𝑃 and 𝜖𝑐𝑜𝑣 = 0.01 following

previous works.

• Patch-to-patch topology error. Since only patches are gener-

ated for segmentation based methods, we define the patch-to-

patch topology error in the same manner as the other topology

error metrics defined above, to measure the structural fidelity to

GT patches. We build the patch-to-patch adjacency matrix for

segmentation based methods by neighborhood search: two seg-

ments 𝑆𝑖 , 𝑆 𝑗 are adjacent if and only if there exists p ∈ 𝑆𝑖 , q ∈ 𝑆 𝑗
such that p and q are within each other’s 6-nearest neighbors.

For our results, the binary patch-to-patch matrix is derived from

the patch-to-curve matrix FE, i.e. , FF =

(
FE × FE𝑇 ≥ 1

)
, where

the inequality is checked component-wise.

6.3 Ablation Study
We do ablation study on major components of the whole pipeline,

including network design and global optimization. Starting from a

baseline approach, we show the necessity and impact of different

components by incorporating them incrementally.

(a) Baseline. As a strong baseline, we use three separate trans-

former networks to detect the three groups elements with their

validness, type classification and geometry embedding (remov-

ing the operation (5) effectively). The topology adjacency can

only be computed from geometric proximity of elements by

rounding the matrices in (9) by 0.5.

(b) Our network (Ours-Net). We use our ComplexNet network

design that enables the cross communication of three element

groups and outputs categorical topology directly. The categori-

cal predictions are simply rounded for obtaining element valid-

ness, type and topological adjacency.

(c) Ournetworkwith optimization.We apply the neurally guided

global optimization to the network predictions of (b), to obtain

the topologically correct B-Rep chain complexes that have re-

fined geometry, denoted as Ours-All. In addition, to discern the

impacts of chain complex extraction and geometric refinement,

we also report the intermediate results between these two steps,

denoted as Ours-Topo.

Visual and quantitative results are shown in Fig. 7 and Table 2.

Explicit topology enables robust B-Rep reconstruction. Topology
reconstruction is critical for CAD reconstruction, not only because

it is an essential component of the B-Rep structure and therefore a

reconstruction target by itself, but also because through the model-

ing of topology the geometric reconstruction of B-Rep structure can

be enhanced, during both network learning and geometric optimiza-

tion. This can be seen through the comparison of (a) the baseline

prediction and (b) our network prediction.

The baseline network is a straightforward approach that uses

three separate transformer decoders for the detection of corners,

curves and patches respectively. On the other hand, our ComplexNet

additionally requires that the detected elements be consistent with

each other through topology prediction and tri-path communication.

As a result, for all three element groups, our network detection

accuracy is higher than the baseline (Table 2); especially for the

corner detection, our F-score is higher by a large margin, as the

corners (containing smooth junctions of multiple patches) are not

prominent geometric features in the input point cloud, and their

detection can be enhanced by the mutual constraints imposed by

curves and patches that connect to them, as our network does.

Visually for the two examples shown in Fig. 7, the baseline network

produces more redundant curves and patches than our network,

which decreases its detection accuracy.

In terms of topology reconstruction, since the baseline network

does not model or supervise topology learning directly, the topology

relations can only be obtained from predicted geometry embeddings,

which do not permit reconstruction of very accurate or consistent

topology. As shown in Table 2, the baseline results have larger

topology errors from ground-truth and significantly larger errors in

consistency than our results.

Global optimization promotes structure validness. The naive round-
ing of our network predictions generally fails to comply with the

B-Rep structure constraints (1)-(3), as shown by the topology in-

consistency errors in Table 2. The predicted geometry is also not

tightly fitted to the input point cloud, and the different elements do

not have conforming shapes, as shown in Fig. 7. In comparison, by

applying the second step of our framework, i.e. , solving the neurally
guided combinatorial optimization and geometric fitting to the input

point cloud and to constraints imposed by adjacent elements, the

results of our whole pipeline are complete and clean, as shown in

Fig. 7 and the zero topology inconsistency errors in Table 2.

We note that on average the global optimization changes detec-

tion accuracy from network prediction slightly in diverse ways, e.g. ,
the patch accuracy is improved while the curve accuracy is reduced,

and changes the topology slightly farther away from ground-truth,

which is expected as it enforces the topology constraints strictly to

obtain a complete B-Rep structure and has to deviate more or less

from the unconstrained network estimations.

Comparing the intermediate results of Ours-Topo with the final

results of Ours-All, we find that the topology optimization indeed

extracts consistent structures from network predictions, as shown

in the topological errors of Table 2, while the geometric refinement

step further introduces slight deviation of predicted elements so that
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Fig. 7. Ablation results. We test the impact of the different components of our framework. For network predictions, we round the validness of elements
by 0.5 to obtain the above results. Compared with a baseline detection network, ComplexNet generation contains fewer redundancies and more accurate
elements. Our chain complex extraction and geometric refinement further turn the network predictions into clean and complete B-Rep models.

Table 2. Statistics of test results for ablation settings. The baseline approach detects corners, curves and patches separately and suffers from low geometric
and topological accuracies. Ours-Net improves the baseline by modeling topology explicitly. Ours-All further improves the network predictions with guaranteed
topology consistency and highly improved geometric fitness (Fig. 7).

Config Corner↑ Curve↑ Patch↑ Topology error↓ Topo inconsistency↓
F-score F-score Type acc Open acc F-score Type acc Open acc FE FV EV |(1)| |(2)| |(3)|

Baseline 77.0 75.0 76.7 94.8 77.1 75.2 93.4 0.229 0.213 0.244 4.51 4.66 2.47

Ours-Net 80.9 75.2 76.9 94.8 78.8 76.2 93.6 0.145 0.131 0.174 0.873 0.608 0.154

Ours-Topo 81.8 75.2 76.7 87.7 81.3 75.5 93.4 0.202 0.171 0.232 0 0 0

Ours-All 80.8 74.7 76.3 87.8 80.1 74.2 92.9 0.201 0.172 0.230 0 0 0

they can fit together according to the solved topology, as evidenced

by the slight decrease of F-scores from Ours-Topo to Ours-All.

6.4 Comparison
Since we take a holistic approach to the B-Rep structured CAD

reconstruction, to our best knowledge we are not aware of any

previous works that aim at the same output. Nevertheless in this

section, we compare our method with representative CAD recon-

struction works that output geometric primitives where applicable,

to discuss the relative strengths of different approaches. We mainly

compare with works that take the “segmentation+primitive fitting”

paradigm for patch reconstruction [Li et al. 2019; Schnabel et al.

2007; Sharma et al. 2020; Yan et al. 2021], as well as for detecting

wireframes containing sharp corners and curves [Wang et al. 2020].

With “patch segmentation+fitting” approaches. In this category of

methods, except for Efficient RANSAC [Schnabel et al. 2007] which

is a search algorithm, the other three approaches are all learning-

based methods trained on the same split of ABC dataset as ours.

In addition, all results are obtained on the same test set containing

input point clouds with normal vectors.

2
HPNet [Yan et al. 2021] is not included in the visual comparison because the publicly

shared code does not generate patches and the data does not contain patches either.

3
The recall and patch-to-patch error for SPFN [Li et al. 2019] are not reported as the

evaluation is based on an extension of SPFN done by ParseNet [Sharma et al. 2020] that

incorporates splines and is not released with sufficient details. For the same reason

SPFN results are not visualized in Fig. 8.

Table 3. Comparison with “patch segmentation+fitting” approaches.
The metrics evaluate patch fitting accuracy (residual), coverage and recall
rate, as well as topology fidelity3. P-cov and P-to-P stand for p-coverage
and patch-to-patch topology error, respectively.

Method Residual↓ Recall(%)↑ P-cov(%)↑ P-to-P↓
E-RANSAC 0.022 68.3 83.4 0.514

SPFN 0.021 - 88.4 -

ParseNet 0.011 79.7 93.0 0.376

HPNet 0.009 81.8 94.3 0.343

Ours 0.019 87.9 95.6 0.191

As reported in Table 3, on metrics of surface patch accuracy and

coverage, our results are comparable to or surpass state-of-the-art

patch segmentation based methods. For example, the residual error

of our results is between that of ParseNet [Sharma et al. 2020]

and SPFN [Li et al. 2019], but our p-coverage is higher than the

other methods. Visually as shown in Fig. 8, our results always have

complete structures that contribute to the higher coverage.

Note that the residual computation discards unmatched GT seg-

ments (patches) from consideration. When comparing our results

with the other methods, we find that GT patches generally have

much better coverage and mostly have matched prediction patches,

which makes our per-patch residual error more prone to larger val-

ues. To reveal this fact, in Table 3 we also report the recall rates of

GT patches that are matched to predictions, which shows a much

larger recall rate of our result than others. Additionally, if we apply a

filtering of patches with outlier residual errors (e.g. , residual > 0.05)
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Fig. 8. Comparison. We compare our method with “patch segmentation+fitting” approaches including Efficient RANSAC and ParseNet2. We note that while
the patch fitting and trimming modules of comparing segmentation-based methods can be improved, our main difference from their results is the generation
of three orders of elements that are consistently connected, which form more complete reconstructions that are closer to the structures of ground-truth.

for our result, the remaining average residual error is reduced to

0.0088 (slightly smaller than the lowest error by HPNet [Yan et al.

2021]), while the recall rate is 81.1% and still comparable to the best

of previous results.

Besides patch accuracy, we also evaluate the patch-to-patch topol-

ogy error which measures topological fidelity to ground truth. As

shown in Table 3, the segmentation based approaches generally

have larger errors from GT topology than our result. The difference

can be understood intuitively by inspection of concrete examples.

Visually as shown in Fig. 8, the segmented patches frequently do

not cover all regions of the input point cloud nor conform with each

other, therefore not forming structurally valid B-Rep models. In con-

trast, our approach generally reconstructs structurally consistent

and more complete B-Rep models.

With PIENET [Wang et al. 2020]. PIENET targets on sharp features
only by taking a two-stage process that detects sharp curve and cor-

ner points first and then generates parametric curves that connect

up the first stage points. Since PIENET is also trained on ABC data,

we directly evaluate its trained network on our test point clouds.

Qualitative cases are shown in Fig. 9, where we see that PIENET

results may not form complete curve networks of sharp features,

while our result curves and corners have to connect into closed

patch boundaries and are therefore more likely to be complete. In

addition, our results contain both smooth curves and sharp features,

as smooth curves (corners) are needed to delineate and connect

the primitive patches. The comparison demonstrates that our B-

Rep chain complex structure promotes more complete and regular

reconstructions. Due to the significant difference of reconstruction

targets, we deem a qualitative comparison for the two methods

uninformative and do not include it in the paper.

6.5 Stress Tests
We further evaluate the performance of ComplexGen under more

challenging cases with data corruptions or generalization to un-

seen data. For corrupted data test, we generate noisy and partial

point clouds respectively, and retrain our network on these two

datasets for evaluation. For reference, we also train the state-of-

the-art ParseNet [Sharma et al. 2020] model on these datasets, al-

though we note that these tasks are not intended to be addressed

by such a segmentation based approach, as a corrupted point cloud

poses challenge for dense segmentation. For generalization tests,

we apply trained networks to real scans and daily objects from
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Fig. 9. PIENET comparison.We compare our method with PIENET that
detects sharp corners and curves. For (a)(b), our complex structure ensures
that the curves and corners connect into valid patch boundaries and there-
fore more complete. For (c), we detect smooth curves in addition to sharp
ones, as smooth curves delineate primitive patches.

ShapeNet [Chang et al. 2015] that are categorically different from

the mechanical parts used for training.

Noisy data. To simulate real noisy data, we apply normal direction

offset for each point with offset distance independently sampled

from two normal distributions of zero mean and standard deviations

𝜎1 = 0.02 and 𝜎2 = 0.05 respectively, which generates two datasets

for training and testing. In addition, we omit the normal vectors of

input points for both training and testing of all approaches.

As reported in Table 4(a)(b), given the noisy input, both ap-

proaches have degraded patch accuracy.. However, the impact on

our approach is much smaller compared with that on ParseNet

throughout all metrics. Visually as shown in Fig. 10(a)(b), we find

that for such noisy data ParseNet has difficulty to obtain reliable and

complete segmentations and patches, which is understandable as a

segmentation-based approach highly relies on the regularity of local

point distributions for segmentation boundary detection and patch

fitting. In contrast, even though the delicate input features may be

too corrupted to tell (e.g. , Fig. 10(b) the inner polygonal loop), thanks
to our holistic modeling of the chain complex B-Rep structure, our

results can leverage the mutual constraints among elements and

still define complete reconstructions with strong regularity.

Partial data. To simulate partial data, we virtually scan each object

in our dataset with 3∼4 view points randomly distributed over the

8 corners of the object bounding box. The partial data frequently

misses corners and inner structures of an object (see Fig. 10(c)(d)).

As reported in Table 4(c), both approaches are again impacted

by the partiality of the input points. Notably, the residuals of both

approaches do not suffer that much, but the coverage of ParseNet

results is significantly degraded than normal input (Table 3). In com-

parison, due to our modeling of complete structures, the coverage

of our results does not suffer obviously than the normal input. Once

again as in the normal input case, our residual is likely to be biased

by the much higher coverage. Visually as shown in Fig. 10(c)(d), we

find that given partial data the patches of ParseNet results are more

difficult to fit well and generally are misaligned. In comparison,

our results still maintain a complete and regularized structure even

though it may be different from the ground truth.

Table 4. Comparison in quantitative metrics under stress tests. We
compare our results with ParseNet on noisy or partial input point clouds.

(a) Noisy data with 𝜎1 = 0.02

Method Residual↓ Recall(%)↑ P-cov(%)↑ P-to-P↓
ParseNet 0.041 52.4 53.3 0.673

Ours 0.029 84.2 83.2 0.255
(b) Noisy data with 𝜎2 = 0.05

Method Residual↓ Recall(%)↑ P-cov(%)↑ P-to-P↓
ParseNet 0.058 54 44.8 0.686

Ours 0.038 77.4 69.9 0.302
(c) Partial data

Method Residual↓ Recall(%)↑ P-cov(%)↑ P-to-P↓
ParseNet 0.018 78.3 76.9 0.410

Ours 0.025 85.2 93.1 0.223

Out-of-distribution generalization tests. ShapeNet models are daily

objects with different characteristics from mechanical parts, but we

apply the network trained with clean ABC data on sampled points

of ShapeNet models for generalization test. Real scans generally

contain missing regions, so we apply the network trained with

synthetic partial data on them. Examples are shown in Fig. 11, where

we find that the synthetically trained networks can still process these

out-of-distribution shapes. Meanwhile, the fragmented predictions

of a real-scanned doorknob show that our training is overly focused

on subtle geometric variations of mechanical parts; such train/test

discrepancy may be mitigated by stronger data augmentation and

weakly supervised learning on diverse shape collections (cf. Sec. 4.2).

6.6 Validness Assessment Results
As discussed in Sec. 5.3, since we always have a valid topology

connection, we can assess the result quality by checking how well

the geometry embedding fulfills the prescribed topology. When we

apply a distance threshold of 0.03, the distribution of validness ratio

for all test samples is shown in Fig. 12. We can see that a large

portion of our results concentrate on the high validness region.

Furthermore, as shown in Fig. 13, the violation of validness usually

pinpoints to a specific structural issue of the reconstructed model.

The causes for the issues can be problematic network predictions, or

being stuck to a local optimal solution for either the chain complex

extraction or the geometric refinement. To find repairing solutions

(possibly with a minimum amount of user interaction) under the

guidance of validity assessment is an important future work.

6.7 Limitations and Future Work
To our best knowledge, this work represents a first effort on recon-

structing holistic CAD B-Rep structures from point clouds directly.

While we have showed that such an ambitious target and com-

prehensive formulation can be beneficial for more complete and

structured reconstruction, each step of the specific implementation

we have taken can almost surely be further improved.

The network detection may miss important geometric features

especially when they are small. To this end, we would like to ex-

plore how to combine the segmentation based approach with our

generative approach so that geometrically interesting features can

be reliably incorporated into the complex generation procedure.
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(a)

(b)

(c)

(d)

Input points GT wire GT model ParseNet Ours wire Ours model

Fig. 10. Stress tests with noisy and partial data. (a)(b) are noisy inputs corrupted with 𝜎1 = 0.02, (c)(d) are partial inputs. By generating the different
orders of elements simultaneously that are mutually constrained, our reconstruction shows more robustness and the results are more complete than those of
ParseNet which is a segmentation based approach and likely to be more sensitive to local point sampling quality.

Fig. 11. Generalization tests on ShapeNet models (top row) and real scans
from AIM@SHAPE-VISIONAIR repository (bottom row). The real scans lack
bottom parts and have highly nonuniform sample points.

Sample validness ratio

#Samples

≤ 50 75 100 %

0

600

1200

Fig. 12. Validness distribution for all 3k test samples. Using a threshold
of 0.03, we find most of the test samples have high ratios of valid topology
connections fulfilled by geometric embeddings. See Fig. 13 for a concrete
analysis of partially valid sample.

(a) GT model (b) Our result

Fig. 13. Validness analysis. This example has 97% validness. The mismatch
comes from the curves and corners highlighted in red, which are connected
according to topology but cannot be realized geometrically as the curve is
predicted to be a circular arc. The curve and one of its corner are actually
redundant compared with ground-truth. The lower part of the model is
valid and the same as GT.

Possible solutions could be to propose elements based on a first

pass of geometric segmentation; for 2D image detection adaptive

proposal generation is shown to improve training convergence and

result quality [Meng et al. 2021].

Both complex extraction and geometric refinement steps can be

enhanced. For example, the objective function of complex extraction

(Sec. 5.1) can use more hints, including the correspondence to input

points for better geometric data integration and the fine-tuning of

termweights based on prediction accuracy on validation sets. On the

other hand, as noted in Sec. 5.2, more constraints (CAD operations)

can be inferred from the typed primitives and their mutual topology,

as shown in [Lambourne et al. 2021; Xu et al. 2021].

ACM Trans. Graph., Vol. 41, No. 4, Article 129. Publication date: July 2022.



ComplexGen: CAD Reconstruction by B-Rep Chain Complex Generation • 129:17

7 CONCLUSION
We have presented ComplexGen, a framework that consists of a

holistic representation of CAD B-Rep models as chain complexes

and a learning plus optimization based approach for generating

such structured representation from input point clouds. The chain

complex representation naturally introduces structural constraints

to enhance model validness. The learning based approach uses a

transformer-based detection network with three paths for all el-

ement groups to generate the geometric primitives, i.e. , corners,
curves and patches, as well as their mutual topological relation-

ships simultaneously; such a design is shown to improve detection

and topology reconstruction than the baseline approach without

topology generation. The neurally guided optimization further fi-

nalizes the predicted complex by solving tractable combinatorial

and geometric fitting problems with structure validness constraints

as induced by the chain complex representation. Through extensive

tests on large dataset, we demonstrate that such a structure-rich

reconstruction task enables more complete and regular CAD B-Rep

models being recovered.
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Fig. 14. Residual block of the SparseCNN encoder. 𝑛 is the channel size.
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A NETWORK STRUCTURE DETAILS
The encoder network is a sparse CNN [Choy et al. 2019] with resid-

ual connections. It contains 22 layers of convolution, pooling and

instance normalization layers, organized as follows:

Conv(1, 7, 64)−
3 × Block(64) − Conv(1, 64, 128) − Pooling−
3 × Block(128) − Conv(1, 128, 256) − Pooling−
3 × Block(256) − Conv(1, 256, 384) − Pooling − Block(384),

where Conv(kernel size, in channels, out channels) denotes a 3D

sparse convolution with specified kernel size, input channel size

and output channel size, Pooling is max pooling by a factor of 2, and

Block(channels) is a residual block with structure shown in Fig. 14.

The tri-path transformer decoder network for generating the

elements of different orders has 𝑙 = 6 layers. Each self-attention or

cross attention operation has 8 attention heads that split the latent

vector equally. No dropout is used as we find it causes instability

for our regression task.

The geometry embedding modules are hypernets that are modu-

lated by latent element vectors and map from the unit parameter

domains to spatial points (Fig. 4). In particular, the latent vector is

first projected to 128 dimension, and then generates an MLP with 3

layers and feature map sizes [𝑥 , 64, 64, 3], where 𝑥 is the parameter

dimension (1 for curves, 2 for patches). LeakyReLU activation is

used in the hidden layers, as the curves and patches do not have

high frequency details to generate.

The projection heads for validness and other classification tasks

are three-layer MLPs with fixed intermediate dimension 𝑑 = 384.

The projection heads for topology generation are FC layers that

project the latent vector to 256 dimension before computing dot

product correlation.

B ILP FORMULATION OF THE STRUCTURE
EXTRACTION PROBLEM

We use the following trick to convert quadratic terms of binary

variables into variables with linear constraints only. For two bi-

nary variables 𝑥,𝑦, their product 𝑥𝑦 ∈ {0, 1} can be represented by

another binary variable 𝑧 with the following constraints:

𝑧 ≤ 𝑥, 𝑧 ≤ 𝑦, 𝑧 ≥ 𝑥 + 𝑦 − 1.

The problem (10) of Sec. 5.1 is therefore reformulated as

max 𝑤𝐹𝑡𝑜𝑝𝑜 + (1 −𝑤)𝐹𝑔𝑒𝑜𝑚
s.t.

∑
𝑖FE[𝑖, 𝑗] = 2E[ 𝑗],
Y[𝑖] ≤ E[𝑖],
Y[𝑖] ≤ O[𝑖],
Y[𝑖] ≥ E[𝑖] + O[𝑖] − 1,∑
𝑗 EV[𝑖, 𝑗] = 2Y[𝑖],

Z[𝑖, 𝑗, 𝑘] ≤ FE[𝑖, 𝑗],
Z[𝑖, 𝑗, 𝑘] ≤ EV[ 𝑗, 𝑘],
Z[𝑖, 𝑗, 𝑘] ≥ FE[𝑖, 𝑗] + EV[ 𝑗, 𝑘] − 1,∑
𝑗 Z[𝑖, 𝑗, 𝑘] = FV[𝑖, 𝑘],{

FE[𝑖, 𝑗] ≤ F[𝑖]
(
≤ ∑

𝑗 FE[𝑖, 𝑗]
)
,

EV[𝑖, 𝑗] ≤ V[ 𝑗] ≤ ∑
𝑘 EV[𝑘, 𝑗],

F ∈ B𝑁𝑓 , E,O ∈ B𝑁𝑒 ,V ∈ B𝑁𝑣 ,

FE ∈ B𝑁𝑓 ×𝑁𝑒 , EV ∈ B𝑁𝑒×𝑁𝑣 , FV ∈ B𝑁𝑓 ×𝑁𝑣 ,

Y ∈ B𝑁𝑒 ,Z ∈ B𝑁𝑓 ×𝑁𝑒×𝑁𝑣

where we have introduced the binary variables Y,Z and correspond-

ing linear constraints to replace the quadratic constraints (2) and

(3). Note that the element variables should be truncated by their

predicted validness probabilities (Sec. 5.1) but we abuse notations

slightly and still denote the remaining numbers as 𝑁𝑣, 𝑁𝑒 , 𝑁𝑓 .

ACM Trans. Graph., Vol. 41, No. 4, Article 129. Publication date: July 2022.


	Abstract
	1 Introduction
	2 Related work
	3 CAD models as B-Rep chain complexes
	3.1 B-Rep Chain Complex
	3.2 Structure Representation and Validness
	3.3 Method Overview

	4 Learning to generate B-Rep chain complexes
	4.1 ComplexNet Design
	4.2 Loss Functions

	5 Neurally guided B-Rep reconstruction
	5.1 Chain Complex Extraction
	5.2 Geometric Refinement
	5.3 Structure Validity Assessment

	6 Results and discussion
	6.1 Setup
	6.2 Evaluation Metrics
	6.3 Ablation Study
	6.4 Comparison
	6.5 Stress Tests
	6.6 Validness Assessment Results
	6.7 Limitations and Future Work

	7 Conclusion
	Acknowledgments
	References
	A Network structure details
	B ILP formulation of the structure extraction problem

