
Surface Mosaic Synthesis with Irregular Tiles
Wenchao Hu, Zhonggui Chen, Hao Pan, Yizhou Yu, Eitan Grinspun,

and Wenping Wang,Member, IEEE

Abstract—Mosaics are widely used for surface decoration to produce appealing visual effects. We present a method for synthesizing

digital surface mosaics with irregularly shaped tiles, which are a type of tiles often used for mosaics design. Our method employs both

continuous optimization and combinatorial optimization to improve tile arrangement. In the continuous optimization step, we iteratively

partition the base surface into approximate Voronoi regions of the tiles and optimize the positions and orientations of the tiles to achieve

a tight fit. Combination optimization performs tile permutation and replacement to further increase surface coverage and diversify tile

selection. The alternative applications of these two optimization steps lead to rich combination of tiles and high surface coverage. We

demonstrate the effectiveness of our solution with extensive experiments and comparisons.

Index Terms—Simulated mosaics, irregular packing, polygon containment, surface tessellation

Ç

1 INTRODUCTION

MOSAICS represent a popular method for decorating
surfaces and can often be seen in churches, parks, or

on sidewalks. Because of their appealing visual effects,
mosaic patterns are regarded as a popular form of folk art.
Since tiles, called tesserae, used in mosaics are often broken
pieces of crockery, ceramics, or glass, they may come with a
wide range of shapes and colors. There are many different
ways to make mosaic patterns, such as Opus Regulatum,
Opus Tessellatum, Opus Vermiculatum, and Opus Palladia-
num [1]. We are particularly interested in Opus Palladianum,
also known as “crazy paving”, which makes use of irregu-
larly shaped tiles to form a pattern. Manually generating
aesthetic mosaic patterns in Opus Palladianum, especially in
large scale, is a demanding task. A rule of thumb used by
artists is that adjacent tiles should have complementary
shapes which fit each other.

We shall propose an effective method for synthesizing
mosaics with irregularly shaped tiles, with the aim of deco-
rating virtual objects and scenes for special visual effects in
the entertainment industry. There are two important goals.
First, the developed technique should be able to work well
with any set of input tiles. Second, the synthetically gener-
ated mosaics should be visually pleasant, meanwhile the
synthetic approach should be more efficient than manual
work when similar results are obtained. Irregularly shaped
tiles, especially concave ones, make it harder to achieve these
goals. Given a collection of input tiles, a mosaic synthesis
algorithm needs to determine a subset of tiles that not only

fit each other well in shape but are also diverse enough to
avoid undesirable repetitive layout of similar tiles. Further-
more, an aesthetic mosaic pattern should have a tight cover-
age of the base surface, without any overlap among the tiles.

Our solution is optimization-based. It alternates between
continuous tile configuration optimization and combinato-
rial tile selection optimization. Here, the title configuration
refers to the position and orientation of a tile in a mosaic.
More specifically, the configurations of individual tiles are
optimized continuously, and the mosaic tiles are selected
with combinatorial optimization. Because a large number of
variables are used to represent the configurations of the
tiles, we need to solve an optimization problem with a large
number of unknowns. To make the problem tractable, we
decouple interactions among different tiles by partitioning
the base surface into approximate Voronoi regions of the
tiles. This partition is dynamically computed while the tile
configurations are updated. With such a partition, increas-
ing surface coverage by the tiles becomes the problem of
increasing the coverage of individual regions by their corre-
sponding tiles. Finally, combinatorial tile selection optimi-
zation is used to further reduce the uncovered area of the
surface by tile permutation and tile replacements so that the
new tiles better fit their neighboring tiles in shape to reduce
the gaps between neighboring tiles.

2 RELATED WORK

2.1 Irregular Packing

The problem of packing irregularly shaped objects into a
given region or volume (called a container) is widely studied
in industrial applications, including garment manufactur-
ing, furniture making, and metal sheet cutting. The problem
is to find the tightest non-overlapping spatial arrangement
of a set of irregularly shaped objects in the container. The
packing problem is NP-hard [2]. Hence, heuristics are usu-
ally used to obtain suboptimal solutions with reasonable
time complexity. A comprehensive review of the work on
2D irregular packing can be found in [3], [4]. Although
many effective methods have been proposed for 2D or 3D
packing of objects of regular shapes, such as rectangles, the

� W. Hu, H. Pan, Y. Yu, W. Wang are with the Department of Computer
Science, The University of Hong Kong, Hong Kong.
E-mail: {wchu, hpan, yzyu, wenping}@cs.hku.hk.

� Z. Chen is with the Department of Computer Science, Xiamen University,
Xiamen 361005, China. E-mail: chenzhonggui@xmu.edu.cn.

� E. Grinspun is with the Department of Computer Science, Columbia
University, New York, NY 10027. E-mail: eitan@cs.columbia.edu.

Manuscript received 15 Jan. 2015; revised 15 Sept. 2015; accepted 28 Sept.
2015. Date of publication 5 Nov. 2015; date of current version 3 Feb. 2016.
Recommended for acceptance by A. Tal.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TVCG.2015.2498620

1302 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 22, NO. 3, MARCH 2016

1077-2626� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

geometric complexity of irregular shapes makes the packing
problem more challenging. To our knowledge, there has
been no prior work on the packing problem on curved sur-
faces in the field of operational research.

2.2 Polygon Containment

Polygon containment, which is a variant of the packing
problem, is to determine whether and how one or more
nonoverlapping polygons can fit within a given region. Sin-
gle polygon containment with translation only has been
investigated by Baker et al [5], and rotations are considered
in [6], [7], [8], [9]. The cases of two and three polygons are
studied in [10], [11]. Translational and rotational polygon
containment problems with even more multiple polygons is
investigated by Milenkovic [12], [13]. Grinde and Cava-
lier [8] use a mathematical programming formulation/
model to solve the following containment problem: can a
(not necessarily convex) polygon P be translated and/or
rotated such that P fits within a convex polygon Q?

2.3 Computer Simulated Mosaics

The problem of synthesizing 2D mosaics has extensively
been studied. A relatively recent survey of mosaics on
images and planar surfaces can be found in [14] and [15].
Much research has focused on adding mosaic-like effects to
a source image. Here we only focus on the method catego-
rized as ancient mosaics by [14] which simulates mosaics by
arranging tile images in a container image. Hausner [16] cre-
ates mosaics with rectangular tiles using centroidal Voronoi
diagrams based on the Manhattan distance. Liu et al. [17]
improves Hausner’s method by proposing a fully automatic
approach that optimizes an objective function accounting
for the desired mosaic properties. Kim and Pellacini [18]
pack image tiles into an image container by matching the
color of the image tiles to colors in the image container.
Tight packing has been achieved by energy minimization
and permitting tiles to undergo small deformation. Battiato
et al. [19] combine gradient vector field in [20] with tile cut-
ting strategies. Compared with using only rectangular tiles,
the results can better capture the features of the underlying
images and reach higher area coverage. At the same time, it
provides tunable parameters to control the complexity of
the resulting tiles. Please note that since tile cutting changes
tile shapes, it is not applicable to our problem here. Blasi
and Gallo [21] propose a method which exploits extracted
directional guidelines and tile cutting, for simulating the
workflow of mosaic artists. In this method, the positioning
and orientation of tiles can capture image features and the
tile shapes are kept close to those seen in real-life mosaic.
And as an extension to [21], the work in [22] focuses on the
generation of classical Opus Vermiculatum, which treats
mosaic tiles in the foreground and background differently
and adds snaking tiles around the foreground, in order to
better highlight the content in the foreground. In [23], [24],
[25], Lloyd-type relaxation is exploited to evenly distribute
tiles within a planar region. When tiles have irregular
shapes, these methods become less effective, and often leave
large gaps between the tiles. Reinert et al. [26] propose a
method for arranging given shapes into an artistic layout by
inferring from user’s interactions.

There is relatively little work on creating mosaics on sur-
faces in 3D. The work presented in [27] considers placing
square tiles with equal size on a surface. Dos Passos and
Walter [28] extends Lai et al.’s technique to surface mosaics
with nonuniform rectangular tiles. In [29], they simulate
mosaics over a sculpture surface using the Voronoi tiles of a
set of seed points on the surface. As a consequence, the tiles
in their results always have the recognizable convex shapes
of Voronoi cells. In contrast, we tackle a more challenging
and practical problem of creating surface mosaics using a
set of irregularly shaped tiles that the user provides.

2.4 Reassembly of Fragments

Automatic reassembly of broken objects from a large collec-
tion of irregular fragments is of great interest in archaeol-
ogy. Computer-aided technologies make it possible to
digitize detailed geometry and texture of each fragment and
reassemble digitized fragments using a computer algo-
rithm. A common approach to this problem, based on auto-
mated cluster agglomeration, first identifies pairwise
matches among the fragments according to shape [30], [31],
texture and normal [32] cues, and then assembles them into
larger clusters through a connectivity graph. One important
assumption made in these reassembly solutions is that the
fragments are broken pieces of the same object so that one
may expect to find perfect matches from the fragments. This
assumption is not applicable in our setting, since the tiles
used in a mosaic can have arbitrary shapes and are not nec-
essarily the pieces of the same original object.

3 PROBLEM DESCRIPTION

The input to our mosaic synthesis problem consists of a base
surfaceM, which is usually represented as a triangle mesh
surface, and a set of irregularly shaped meta objects repre-
sented as planar polygons, denoted L ¼ fSigmi¼1. The goal of
optimizing tile selection and configuration is to have suffi-
ciently large coverage of the base surface. Every tile lies on a
2D plane that is tangent to the base surface at the centroid ci of
Pi. Our task is to seek an optimal arrangement of tiles,
fðPj;QjÞgnj¼1, where the tile Pj is a duplicate of an object in

L ¼ fSigmi¼1, andQj denotes the set of the parameters describ-
ing the configuration of Pj, i.e., its position coordinates and
orientation angle on the base surfaceM. The tile arrangement
needs to meet the constraint that the tiles do not overlap with
each other. Note that the number of tiles to be used in a
mosaic, denoted n, is not predefined, and is itself a variable.
Surface coverage is defined as the ratio of the sum of the areas
of the chosen tiles to the total area of the base surface.

In our problem formulation, we allow each tile to be a
scaled version of the meta object that it is associated with,
and the scaling factor of each tile is a continuous variable to
be optimized. This flexibility in scaling is used to accommo-
date the fact that the tile size should change according to
the local curvature variation of the base surface to provide a
tight fit on it; specifically, smaller tiles should be placed at
regions of high surface curvature. We note that this varia-
tion in tile size does not compromise much the visual effect
of the mosaic, which is mainly determined by the shape and
layout pattern of the tiles. Furthermore, these scaling factors
are used in our algorithm for growing a set of small “seed

HU ET AL.: SURFACE MOSAIC SYNTHESIS WITH IRREGULAR TILES 1303

tiles” into a mosaic of tiles. Note that allowing the final scale
factors not to strictly be 1.0 makes our problem formulation
different from a packing problem requiring that the tile size
remain the same as specified in the input.

4 OVERVIEW OF METHOD

Our hybrid optimization scheme for the mosaicing problem
defined in the previous section consists of continuous con-
figuration optimization and discrete combinatorial optimi-
zation. The pseudo-code of the overall algorithm is given in
Algorithm 1. The intermediate results of the algorithm are
shown in Fig. 1.

Algorithm 1. Synthesizing Mosaic by Hybrid
Optimization

Input:M, a supporting surface
a, a small threshold for determining if the increase of cover-
age rate stops
L ¼ fS1; S2; . . . ; Smg, a set of meta objects

Output: A compact layout of tiles overM
1: Generate initial tiles by randomly sampling Lwith

repetition
2: Shrink the tiles and distribute them overMwithout any

overlap
3: Perform tile configuration optimization (Algorithm 2)
4: repeat
5: Swap the tiles (Algorithm 3.1)
6: Shrink the tiles and optimize (Algorithm 2)
7: until the increase of surface coverage < a

8: repeat
9: Replace the tiles (Algorithm 3.2)
10: Shrink the tiles and optimize (Algorithm 2)
11: until the increase of surface coverage < a

12: Fill the holes (Algorithm 3.3)

The continuous configuration optimization is based on
an iterative relaxation scheme, which iteratively adjusts tile
configuration, including position, orientation and scaling,
with the goal of increasing surface coverage. It starts with
an initial arrangement of tiles fPigni¼1 of sufficiently
small size over the surface M (Section 5.1). As shown in
Algorithm 2, in each iteration, the base surface is partitioned
into a set of nonoverlapping regions using the tiles as the
centers of the regions (Section 5.2). To increase surface cov-
erage, the configuration of every tile is adjusted using con-
strained nonlinear optimization (Section 5.3) so that the tile

can cover more area within its own region. More details
about the algorithm will be explained in Section 5.3.

Algorithm 2. Tile Configuration Optimization

Input:M, a supporting surface
fP1; P2; . . . ; Png, an initial layout of tiles overM
fb1; b2; . . . ; bljbj < bjþ1g, scaling factor barriers
itnmax, the maximum iteration number for each phase

Output: A compact layout of tiles overM
1: for each scaling barrier bj do
2: itncurr 0
3: while itncurr < itnmax do
4: Construct an approximate chordal axis transform and

project the resulting regions to the planes of fPigni¼1
5: for each tile Pi do
6: ri scaling factor between Pi and its corresponding

meta object
7: Find the largest copy of Pi (with a scaling factor si, a

rotation angle ui, and a translation ti) that lies
completely inside Vi

8: if siri < bj then
9: Apply the transformation T ðsi; ui; tiÞ to Pi

10: else
11: Apply the transformation T ðbjri ; ui; tiÞ to Pi

12: end if
13: end for
14: Project the centroids of the updated tiles to the sup-

porting surface, and align the tiles with the tangent
planes

15: itncurr itncurr þ 1
16: end while
17: end for

When the tiles grow during tile optimization, some tiles
may reach their prescribed sizes earlier than the others,
before their attaining optimal position and orientation. That
may hinder other tiles from reaching their optimal configu-
ration. To avoid such suboptimal scenarios, we control the
pace of scaling factor optimization with a multi-phase syn-
chronization strategy. That is, all the tiles are expected to
almost simultaneously reach their prescribed sizes. By
adopting this synchronization scheme, tile sizes can be opti-
mized in a more coordinated manner and better tile configu-
rations can be reached globally.

Starting from a random initial placement of tiles, configu-
ration optimization alone usually cannot produce satisfac-
tory results. Therefore, we further apply combinatorial

Fig. 1. Algorithm overview. (a) Tile initialization and associated domain partition; (b) Relaxation result before reaching the first scaling factor barrier;
(c) Relaxation result by Algorithm 2; (d) Result by tile permutation (Algorithm 3.1) and relaxation; (e) Result by tile replacement (Algorithm 3.2) and
relaxation; (f) Result by hole filling (Algorithm 3.3).

1304 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 22, NO. 3, MARCH 2016

optimization for tile permutation, tile replacement and hole
filling, as illustrated in Algorithm 3. For every tile in an
existing layout, we temporarily remove it and extract the
boundary of the vacancy formed by its surrounding tiles.
The tile permutation step checks whether there exists a sub-
set of tiles such that a permutation of the tiles in this subset
will yield a tighter fit inside the tiles’ regions than their cur-
rent occupants. If yes, the performed tile permutation will
be accepted; otherwise, the permutation is not accepted and
we back track to the configuration before the permutation.
See details in Section 6.1. Since there may exist a number of
different meta objects that could be used for every unoccu-
pied region, the replacement step tries to replace a tile with
a meta object that better fills the region (Section 6.2). Finally,
we detect areas on the supporting surface that have not
been covered by any tiles, and fill them with additional tiles
to obtain the final mosaic pattern.

Algorithm 3. Tile Combination Optimization

Input:M, a supporting surface
L ¼ fS1; S2; . . . ; Smg, a set of meta objects
fP1; P2; . . . ; Png, an initial layout of tiles overM

Output: A layout of tiles with improved shape compatibility

Algorithm 3.1 Tile Permutation
1: choose a subset of the tiles in the current layout
2: compute the best permutation of the tiles in the subset

Algorithm 3.2 Tile Replacement
3: for the tile surrounded by large uncovered region do
4: Remove it from the layout
5: Extract the hole boundary formed by surrounding tiles
6: Fill the hole with the best matching meta object
7: end for

Algorithm 3.3Hole Filling
8: Detect the vacant space (holes)
9: Fill the holes with the best matching meta objects

We perform tile configuration optimization and tile com-
bination optimization alternately in multiple passes. These
operations are complementary to each other and together
they lead to an optimized choice of tiles and their configura-
tion. After each pass of tile combination optimization, as a
relaxation technique, we reduce the size of all tiles by a cer-
tain percentage before optimizing their configuration again.
Surface coverage is usually improved significantly after a
few rounds of such combinatorial tile optimization and
relaxation.

In the following, we discuss the details of our algorithm.

5 TILE CONFIGURATION OPTIMIZATION

5.1 Initial Tile Placement

The initial number of tiles, denoted n, is determined by
dividing the total area of the supporting surface by the aver-
age area of the meta objects. After determining the number,
the tiles are initially distributed over input surface. This dis-
tribution is achieved by a curvature based strategy, such
that initial tile density varies with curvature at different
regions of a surface. In particular, the tile density is posi-
tively correlated with the curvature, i.e., more tiles with
small sizes at high curved regions and vice versa, so as to

make tiles closely capture surface features. In our imple-
mentation, we use the curvature to define a function on sur-
face to control the desired tile size at a surface point p,
denoted as DTSðpÞ. Then n points are uniformly sampled
on the surface according to the density function derived
from DTSðpÞ by the blue noise sampling method in [33].
Tiles are chosen one by one from input in a round-robin
way. If n is larger than the number of tiles, the procedure
aforementioned is repeated until n tiles are distributed over
the surface. Then the tiles are placed on the tangent planes
at the selected points over the surface. In addition, all tiles
are shrunk to be 10 percent of their desired sizes to remove
potential overlaps between any tiles. Note that subsequent
relaxation steps will make the tiles larger to reach their pre-
scribed sizes.

5.2 Approximate Chordal Axis Transform

Given a set of n disjoint tiles fP1; . . . ; Png with their cent-
roids on the supporting surface, we would like to partition
the supporting surface into a set of nonoverlapping regions,
one surrounding each tile, so that we can optimize the con-
figuration of each tile individually to improve the coverage
of its containing region. We use the chordal axis transform
(CAT) [34] for partitioning the surface.

In practice, we approximate a tile with a set of sufficiently
dense and uniformly spaced sample points along its bound-
ary. Furthermore, a Delaunay triangulation of these sample
points over the supporting surface is constructed as in [35].
Then we compute the chordal axis [34] from the Delaunay
mesh. We first classify the edges of the Delaunay mesh into
two categories. Edges connecting vertices from two tiles are
called external edges while the other edges are called inter-
nal edges. Triangles can also be classified into three catego-
ries: triangles with three external edges (junction triangle),
triangles with two external edges(external triangle), and tri-
angles without external edges (internal triangle), as shown
in Fig. 2. The chordal axis is obtained by connecting the mid-
points of the external edges of every external triangle and
also connecting the midpoints of all edges of every junction
triangle to the centroid of that triangle.

All edges created in the previous step form n connected
3D polygons, each of which surrounds one of the tiles, as
shown in Fig. 1. We call these polygons CAT regions. In the
optimization detailed in the next section, a tile will be
restricted to lie on a tangent plane in every iteration. We
project every CAT region onto the tangent plane containing
the corresponding tile, resulting in a 2D projected CAT
region for each tile. The projected CAT region of tile Pi is
denoted Vi.

Fig. 2. Approximate construction of Chordal Axis Transform. T1, T2, and
T3 are a junction triangle, an external triangle, and an internal triangle,
respectively.

HU ET AL.: SURFACE MOSAIC SYNTHESIS WITH IRREGULAR TILES 1305

5.3 Open Boundaries and Sharp Features

We treat open boundaries and sharp features on a support-
ing surface as follows. We sample a sufficient number of
points on a mesh boundary and use them as barriers to stop
tiles from moving beyond the boundary. The projected CAT
regions associated with these points are sufficiently small
when tiles are packed tightly near the boundary. In other
words, these extra points do not occupy much surface area
so that there is little gap between the tiles and the mesh
boundary. In practice, this method makes tiles align well
with the boundary (see Figs. 8 and 10). In addition, a sharp
feature curve on the mesh surface is handled as a two-sided
boundary in our implementation.

5.4 Tile Containment Optimization

In the relaxation process as described in Algorithm 2, we
need to optimize the position, size, and orientation of a
tile Pi within its projected CAT region Vi. We solve this
problem by finding the largest copy of Pi inside Vi, since
our goal is to maximize surface coverage. Because the
projected CAT region Vi is actually a planar polygonal
region, the problem is equivalent to solving extremal
polygon containment problem [36] with two polygons.
There has been much work on this problem as reviewed
in Section 2. However, we cannot use the existing meth-
ods directly because those methods have restrictive
assumptions on fixed rotations and convex polygons,
while both the tile polygon and the container polygon
may be concave in our setting.

We formulate extremal polygon containment as an
optimization problem with nonlinear constraints as fol-
lows. Let P denote the inner tile polygon be P and Q the
container polygon. Recall that the inner polygon P is
approximated with a sequence of sample points, denoted
fp1; . . . ;plg. Our strategy is to define a feasible region
delimited by a subset of edges of Q for each sample pi.
We compute a Voronoi diagram for the set of sample
points on P . Each edge of polygon Q must intersect with
at least one of the Voronoi regions, as shown in Fig. 3. Let
fe1; . . . ; emg be the set of edges of Q. We collect the subset
of edges of Q that intersect with the Voronoi region of
each sample pi, and denote it as Ei. In our formulation,
sample pi is constrained to be on the positive side of the
edges in Ei. Note that the set of edges in Ei changes as
the optimization proceeds. Therefore, we need to dynami-
cally update Ei during the optimization.

Our formulation relies on the local coordinate frame
associated with the polygon P . Let the translation of P be
t ¼ ðt1; t2Þ, the angle of the rotation around the origin be u,
and scaling, if allowed, be s. As P moves away from its

initial position, the samples on P can be represented as
functions of ðs; u; t1; t2Þ as follows,

pi
0 ¼ piðs; u; tÞ ¼ s �RuðpiÞ þ t; 1 � i � n;

where Ru is the 2D rotation matrix specified by the angle u.
In the above context, we formulate the extremal polygon

containment problem as a 2D constrained nonlinear optimi-
zation as follows.

Maximize fðs; u; tÞ ¼ s

subject to
ðpi
0 � v0j Þ � ej

jejj � 0 for 1 � i � l; j 2 Ei

� p

6
� u � p

6
;

(1)

where v0j is the starting point of the directed edge ej. The
objective function of the optimization is simply the scaling
factor s, which directly controls the area of P . The amount
of incremental rotation is constrained to a small range every
time the set of constraining edges is updated, because the
local containment constraints for P may not continue to
hold if there is large step of rotation. An empirical range for
the incremental rotation is ½�p=6;p=6�, which always leads
to stable results in our experiments.

Specifically, we introduce a set of scaling factor barriers
fb1; b2; . . . ; bl ¼ 1:0jbi < biþ1g, which is a monotonic sequ-
ence of numbers within the valid range for scaling factors.
As shown in Algorithm 2, we increase an active barrier step
by step from the smallest number to the largest in this
sequence. At each step, we perform a number of relaxation
iterations. Those tiles which scale fast would reach the
active barrier first and have to wait for the others. Once the
size of every tile has reached the active barrier, the active
barrier is increased to the next level and tiles can be further
scaled again.

We use the interior-point algorithm provided by the
software library KNITRO [37] to solve the above optimi-
zation problem. It replaces a nonlinear programming
problem with a series of barrier subproblems, and follows
an interior path to the solution. The initial values for
ðs; u; t1; t2Þ are set to ð1; 0; 0; 0Þ. A local maximizer of the
above optimization problem with this particular starting
point is usually satisfactory for our application. In the
presence of an active barrier for the purpose of synchroni-
zation among tiles, as discussed in Section 4, we simply
make the scaling factor equal to the active barrier when
the final scaling factor from the above optimization
exceeds the active barrier.

6 TILE COMBINATION OPTIMIZATION

Tiling results obtained from the relaxation process are
often not visually satisfactory enough. There may be areas
of uncovered space left within projected CAT regions due
to shape mismatch between a tile and its surrounding
tiles. We resort to tile combination optimization to further
reduce the amount of uncovered space. Generally, for
every tile, we extract the “hole” delimited by its sur-
rounding tiles, and try to locate a different meta object
that, after appropriate scaling, can better fit into the hole
than its current occupant.

Fig. 3. Local constraints for extremal polygon optimization: (a) local con-
straints for vertex pi; (b) the extremal polygon obtained by our method.

1306 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 22, NO. 3, MARCH 2016

6.1 Tile Permutation

Since we maintain a Delaunay mesh of all the sample
points along the edges of tiles, the extraction of the uncov-
ered hole region around a tile can be performed through a
region growing scheme, as shown in Fig. 4a. Starting with
the set of boundary edges of a tile that participates in a
permutation, the region grows by including triangles inci-
dent to its boundary edges. In practise, the growth of the
region stops if all the boundary edges either reach other
tiles or are shorter than 10 percent of average edge length.
Experimentally, if the short edges below this are included
in a hole region, the shape of the region will become too
complicated to be matched. Afterwards, to find another
tile that can better fit into the extracted region, we exploit
a shape matching method (Section 6.3).

Given two shapes, the shape matching method returns a
matching transformation and a similarity score between
them. For each tile, we compute shape similarity scores
between its hole region and all other tiles. We compute a
new permutation of the tiles used in the layout as follows.
Firstly, we build a bipartite graph, where each edge
between the ith region and jth tile is associated with a
weight defined by their similarity score. Our task is then
finding the matching with the minimum accumulated
weight in the bipartite graph. Such a matching corre-
sponds to the best permutation of the tiles and is found by
solving the assignment problem using the Hungarian algo-
rithm [38]. Note that the hole regions of the tiles used in
shape matching give an overlapping decomposition of the
supporting surface. As a result, the new shapes of adjacent
tiles after permutation may be overlapping with each
other. To avoid this problem, we divide the tiles in the cur-
rent layout into subsets such that the tiles in the same sub-
set are not adjacent to each other. Two tiles are considered
to be adjacent if there is at least one Delaunay edge con-
necting them.

6.2 Tile Replacement and Hole Filling

The tile replacement replaces a tile with another one (from
themeta objects), which can better fill its surrounding region.
However, the excessive use of this operation could lead to
the loss of shape diversity in the layout, since it tends to favor
some tiles than others in the resulting layout. Thus, we only
replace tiles surrounded by large uncovered regions. We use
the area ratio between a tile and its surrounding region to
measure the uncovered space. Empirically, we sort all the
area ratios in an increasing order and only replace the first 25
percent of these tiles. Figs. 5a and 5b illustrate the tile fre-
quencies in two examples in Fig. 8 after replacement is per-
formed three times. From the figures, it can be seen that
certain tiles become more dominant than others Actually,
this can be mitigated by limiting the number of times the
replacement step is performed and the number of tiles to be
replaced. Usually less than three rounds of replacement can
lead to sufficiently high coverage, and more iterations only
insignificantly improve the coverage.

Due to the limited number of shapes provided by the
user, there may still be some relatively large uncovered
areas on the supporting surface. We follow the same steps
as in Section 6.1 to detect and extract holes. We fill every
detected hole with a new tile. During hole filling, a new
shape is selected through shape matching. In our experi-
ments, we fill only those holes whose areas are larger than
50 percent of the mean area of all the tiles, since holes larger
than this percentage are obviously noticeable.

Fig. 6 shows an example on combination optimization.
Wherein, Fig. 6a contains a uniform tile shape only, for
which the shape-based tile permutation and replacement
have no effect. And Fig. 6b contains variant shapes, for
which shape variety can be exploited for more compact
arrangement. It can be observed that the optimization
based on shape matching can improve coverage rate. And

Fig. 4. Tile combination optimization. (a) Region extraction; (b) Replaced
tile with better shape compatibility with surrounding tiles.

Fig. 5. Statistics of Fig. 8(d)&(f): (a)&(b) Tile appearance frequency after three rounds of replacement; (c)&(d) Histograms on ratio of tile size toDTS.

Fig. 6. An example of the comparison between uniform and variant
shapes, both with 400 tiles. The coverage rate: (a) 78.3 percent (b) 86.4
percent.

HU ET AL.: SURFACE MOSAIC SYNTHESIS WITH IRREGULAR TILES 1307

Fig. 9 shows an example with very concave tiles, from
which we can see that permutation and hole filling can
match neighboring tiles in most local regions.

6.3 Shape Matching

There exist many shape matching techniques that work
with different shape representations and transformations.
We use the affine registration method in [39] to compute the
matching transformation between two shapes. Only its sim-
ilarity transformation part of the matching transformation
is used in our solution.

Specifically, the best matching meta object for a target
region is selected as follows. First, the centroid of every
meta object is aligned with that of the target region. Second,
an optimal 2D orientation of every meta object is computed
by applying the registration method in [39]. Third, every
meta object is uniformly scaled so that it has the same area
as the target region. Finally, the scaled meta object with the
largest common area shared between itself and the target
region is chosen to be the best matching one. And the area
of the symmetric difference of the two shapes is defined as
the similarity metric.

Note that a meta object is not associatedwith a specific size
during shape matching. All the tiles will be scaled smaller
before the subsequent relaxation step. And again, the synchro-
nization strategy for the scaling factor during relaxation will
prevent tiles frombecoming overly large or small.

7 EXPERIMENTS AND RESULTS

We have implemented our algorithm in C++. All the experi-
ments were conducted on a PC with a 2.4 GHz Intel quad-
core processor and 8 GB memory. We use OpenMP to

automatically parallelize the code for tile configuration opti-
mization. The running time for each model depends mainly
on the number of tiles used. Typically, our algorithm gener-
ates a high-quality synthesized surface mosaic in 10-20
minutes for a mesh covered with 2,000 tiles.

Eight sets of tiles were presented for mosaic synthesis in
this paper, as shown in Fig. 7. These tile sets include syn-
thetic shapes, like the random convex polygons in Fig. 7a,
shapes cropped from clip arts as in Figs. 7b, 7c, 7d, and 7e
as well as tile sets cropped from photographs of real-world
tiles made from rocks and stones, as shown in Figs. 7f and
7g. Note that every tile set we use consists of irregularly
shaped tiles.

In all our experiments, we use the following function to
define the desired tile size at a mesh vertex:

DTSðviÞ ¼ ðjkmaxj þ 1Þ�0:6;

where kmax is the maximum principal curvature at the mesh
vertex vi, and the constant 1 is added to ensure that the
denominator does not vanish. The desired tile size at any
point of the mesh surface is then obtained by linear interpo-
lation. Figs. 5c and 5d show histograms of the ratio between
the resulting tile size and DTS computed at tile-surface
touching points. From the two histograms, it can be seen
that most tile sizes respect the surface curvature. Through
size control, the ratio is restricted within the range ½0:7; 1:2�.
During the optimization discussed in Section 5, the size
function is used to guide the initial distribution of tiles and
the tile size at any point over a mesh surface. In all the ren-
dered images, all the 2D planar tiles are extruding them off
the base surface slightly so that the 3D appearance of the
titles allows better appreciation of the mosaics. In particular,
within highly curved surface regions, such extrusion may
cause adjacent tiles to overlap. Therefore, over the regions
with negative curvature, we perform collision detection
after extrusion. As long as penetration occurs, the two col-
liding tiles are shrunk until they are completely separated.

We have tested our algorithm on various mesh models
and tile sets to create a variety of surface mosaic patterns.
Fig. 8 shows some of the results synthesized by our method.
The coverage rate of the supporting surfaces is between 85
and 89 percent for the rock and stone tiles and between 72
and 80 percent for tiles cropped from clip arts. The tiles in
these results faithfully follow the geometry of the support-
ing surface by varying their size according to the surface
curvature. Fig. 11 shows the relationship between the num-
ber of tiles and coverage rate. And in most cases, more tiles
lead to higher coverage rate.

Together with a preprocessing step of mesh segmenta-
tion, users can exploit our method on different segments
using different tiles, in order to create multiple patterns on
one single surface (Fig. 10). Since our method is capable of
aligning tiles along open boundaries, the tiles on different
segments can match well at the inter-segment borders, with-
out leaving noticeable gaps.

7.1 Anisotropic Mosaics

It often happens that the orientations of the tiles are
required to align with a given vector field, especially when
the tiles have regular shapes with distinct orientations, such

Fig. 7. Tile sets used in mosaic synthesis. The number of meta objects in
tile sets (a-h) are 100, 28, 16, 40, 25, 70, 54, and 79, respectively.

1308 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 22, NO. 3, MARCH 2016

as rectangles and squares. Our method can easily be
adapted for this type of anisotropic mosaic synthesis. When
the tile relaxation algorithm (Algorithm 2) is applied, the
rotation of a tile is not a variable subject to optimization, but
determined by a vector field. That is, only tile translation
and scaling are optimized. Fig. 12 shows an example where
the orientations of the tiles are aligned with the principal
directions of a surface.

7.2 Comparisons

We compare our method with the two surface mosaic meth-
ods in [24] and [40], which employ iterative centroidal

Voronoi tessellation for planar mosaic generation. During
each iteration, these methods compute a Voronoi tessella-
tion of the underlying domain taking polygonal tiles as
sites, move tiles to the centroid of their Voronoi cells, and
reorient the tiles so that the principal direction of a tile
matches the orientation of the closest domain boundary [24]
or the principal direction of the tile’s Voronoi cell [40]. The
principal directions are estimated by principal component
analysis. To improve the coverage rate of the results by
these methods, we perform a simple scaling at the end so
that every tile touches the boundary of its Voronoi cell.
From Fig. 13, we see the resulting coverage rates of these

Fig. 8. A gallery of synthesized mosaics on surfaces. From left to right and top to bottom: Hypersheet with the tile set in Fig. 7(f), #tiles n ¼ 1;869 ,
coverage rate a ¼ 0:868; Bunny with the tile set in Fig. 7(a), n ¼ 4;753, a ¼ 0:881; Double torus with the tile set in Fig. 7(h), n ¼ 1;530, a ¼ 0:865;
Bowl with the fruit tile set, n ¼ 500, a ¼ 0:788; Cloak with the flower tile set, n ¼ 800, a ¼ 0:726; Egg with the tiles of letters, n ¼ 1;000, a ¼ 0:801.

HU ET AL.: SURFACE MOSAIC SYNTHESIS WITH IRREGULAR TILES 1309

two techniques are typically at least 20 percent lower than
the coverage achieved by our results.

Square tiles with the same size [27] or different
sizes [28] have been used for surface mosaics. Dos Passos
and Walter [29] present a simple method for visually sim-
ulating mosaics with irregular tiles over a sculpture sur-
face. The tiles are computed using a Voronoi diagram
defined with a distribution of points on the surface. We
compare our method with this method in Fig. 14. With
perfect edge alignment between adjacent tiles, the result
obtained with the method in [29] does not resemble a
man-made mosaic, where larger gaps between adjacent
tiles are necessary to fill grout, and the edges of two adja-
cent tiles are not always perfectly aligned. In comparison,
our result looks closer to a manually produced mosaic

pattern. Most importantly, our method can handle any
user-provided irregularly shaped tiles, while the tiles in
Dos Passos and Walter’s results must have the usual con-
vex shapes generated as 2D Voronoi cells.

We have also conducted a comparison between surface
mosaics generated by our method and those by manual
design. We have developed a simple interface to allow a
user to place tiles directly on a surface piece by piece.

Fig. 9. 2D example with the concave alphanumeric tiles.

Fig. 10. Synthesized surface mosaics with user-customized segmenta-
tion and patterns.

Fig. 11. From left to right, the number of tiles: 400, 800, 1,200; coverage
rate: 80.02, 83.19, 87.58 percent.

Fig. 12. Anisotropic mosaic simulation on surface.

Fig. 13. A comparison with existing techniques using centroidal Voronoi
tessellation. Two tile sets are used: (a) our results with coverage rates
84.7 percent (upper) and 84.3 percent (lower) ; (b) results by [24] with
coverage rates 60.9 and 68.1 percent; (c) results by [40] with coverage
rates 59.7 and 64.8 percent.

Fig. 14. A comparison with an existing technique for surface mosaic gen-
eration by using Voronoi polygons [29]. Left: result by [29]; middle&right:
our results.

1310 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 22, NO. 3, MARCH 2016

The user is also allowed to scale the tiles slightly to find a
better fit. Fig. 15 shows results from both this manual
design process and our automatic method. The manual
design can make very nice surface mosaics at a large
labor cost. Our automatic solution is much faster than
manual work while both results are comparable in terms
of aesthetic quality.

8 CONCLUSION

Automated synthesis of surface mosaic patterns helps
make virtual worlds look more realistic. An important
aspect of realism comes from the history of an artifact, or
the process by which it is made. Therefore, we seek to
compare our automated technique to designs produced
by humans. We have presented a method for making
synthetic surface mosaics with irregularly shaped tiles. It
integrates continuous constrained optimization with dis-
crete combinatorial optimization, and alternates between
tile configuration optimization and tile combination opti-
mization. Tile configuration optimization relies on a sur-
face partition tailored for the tiles and optimizes the
configuration of each tile to achieve a relatively tight fit
within its own surface region. Tile combination optimiza-
tion performs tile permutation and replacement to reduce
uncovered surface area. These operations are complemen-
tary to each other and altogether they give rise to a near-
optimal choice of tiles and their configuration. Extensive
experiments and comparisons have demonstrated the
effectiveness of our solution.

8.1 Limitations

To achieve better surface coverage and adapt to surface cur-
vature variation, we apply tile scaling during the synthesis
process and allow the tile sizes to be slightly different from
their input sizes. As a consequence, our problem formula-
tion is different from a packing problem and the method is
not applicable to generating mosaic patterns on real physi-
cal objects with real tiles. Although our method is capable
of handling generic tile shapes, its outcome is still depen-
dent upon the shape distribution. Different input tile data-
sets vary primarily in terms of shape diversity and
irregularity. Our method deal with tile shapes in the steps

of tile permutation and replacement. Both steps give sug-
gestions based upon the best similarity measure we can
find. Hence in the case of a tile dataset with irregular shapes
(e.g., the letters and numbers), for certain local regions,
there may not exist a good matching tile, which comprises
the coverage of those regions. From the perspective of per-
formance, the method involves many iterations. Hence it
will be quite valuable to find out a gradient-based solution.
Also, we have only considered the shape characteristics
of the tiles and the underlying surface. Hence, when tiles
with different textures are provided, the mosaic pattern
generated by our methods may look chaotic. Besides, only
the coverage rate is taken into account as the objective.
Therefore, as future work, the addition of other aesthetic
criteria (e.g., tile distribution) into the optimization is worth
exploration.

ACKNOWLEDGMENTS

Zhonggui Chen’s work is supported partially by National
Natural Science Foundation of China (61472332), and the
Fundamental Research Funds for the Central Universities
(20720140520). Wenping Wang’s research is supported par-
tially by the GRF project (17208214) of Hong Kong Research
Grant Council, NSFC projects (61272019, 61572021 and
61332015) and Shenzhen Science and Technology project
(JCYJ20140903112959962). Zhonggui Chen is the corre-
sponding author.

REFERENCES

[1] S. King, Mosaic Techniques & Traditions: Projects & Designs from
Around the World. New York, NY, USA: Sterling Publishing Co.,
August 28, 2006.

[2] R. Fowler, M. Paterson, and S. Tanimoto, “Optimal packing and
covering in the plane are NP-complete,” Inf. Process. Lett., vol. 12,
no. 3, pp. 133–137, 1981.

[3] K. Dowsland and W. Dowsland, “Solution approaches to irregular
nesting problems,” Eur. J. Oper. Res., vol. 84, no. 3, pp. 506–521, 1995.

[4] J. A. Bennell and J. F. Oliveira, “A tutorial in irregular shape pack-
ing problems,” J. Oper. Res. Soc., vol. 60, no. s1, pp. 93–105, 2009.

[5] B. Baker, S. Fortune, and S. Mahaney, “Polygon containment
under translation,” J. Algorithms, vol. 7, no. 4, pp. 532–548, 1986.

[6] F. Avnaim and J. Boissonnat, “Polygon placement under transla-
tion and rotation,” in Proc. 5th Annu. Symp. Theoretical Aspects of
Comput. Sci., 1988, vol. 294, pp. 322–333.

[7] R. Martin and P. Stephenson, “Putting objects into boxes,”
Comput.-Aided Des., vol. 20, no. 9, pp. 506–514, 1988.

Fig. 15. A comparison with manual design. (a)&(c): results by manual design, finished in 246 minutes and 357 minutes respectively; (b)&(d) results by
our method, finished in 17 minutes and 47 minutes respectively.

HU ET AL.: SURFACE MOSAIC SYNTHESIS WITH IRREGULAR TILES 1311

[8] R. B. Grinde and T. M. Cavalier, “Containment of a single polygon
using mathematical programming,” Eur. J. Oper. Res., vol. 92,
no. 2, pp. 368–386, 1996.

[9] V. J. Milenkovic, “Rotational polygon overlap minimization and
compaction,” Comput. Geom., vol. 10, no. 4, pp. 305–318, 1998.

[10] F. Avnaim and J. Bsissonnat, “Simultaneous containment of sev-
eral polygons,” in Proceedings 3rd Annu. Symp. Comput. Geom.,
1987, pp. 242–247.

[11] R. Grinde and T. M. Cavalier, “A new algorithm for the two-poly-
gon containment problem,” Comput. Oper. Res., vol. 24, no. 3,
pp. 231–251, 1997.

[12] V. J. Milenkovic, “Multiple translational containment part ii: Exact
algorithms,” Algorithmica, vol. 19, no. 1, pp. 183–218, 1997.

[13] V. J. Milenkovic, “Rotational polygon containment and minimum
enclosure using only robust 2d constructions,” Comput. Geom.,
vol. 13, no. 1, pp. 3–19, 1999.

[14] S. Battiato, G. Di Blasi, G. M. Farinella, and G. Gallo, “Digital
mosaic frameworks—an overview,” Comput. Graph. Forum,
vol. 26, no. 4, pp. 794–812, 2007.

[15] G. Puglisi and S. Battiato, “Artificial mosaic generation,” in Proc.
Image Video-Based Artistic Stylisation, 2013, pp. 189–209.

[16] A. Hausner, “Simulating decorative mosaics,” in Proc. 28th Annu.
Conf. Comput. Graph. Interactive Tech., 2001, pp. 573–580.

[17] Y. Liu, O. Veksler, and O. Juan, “Generating classic mosaics with
graph cuts,” Comput. Graph. Forum, vol. 29, no. 8, pp. 2387–2399,
2010.

[18] J. Kim and F. Pellacini, “Jigsaw image mosaics,” ACM Trans.
Graph., vol. 21, no. 3, pp. 657–664, 2002.

[19] S. Battiato, A. Milone, and G. Puglisi, “Artificial mosaic generation
with gradient vector flow and tile cutting,” J. Elect. Comput. Eng.,
vol. 2013, p. 8, 2013.

[20] S. Battiato, G. Di Blasi, G. Gallo, G. Guarnera, and G. Puglisi,
“Artificial mosaics by gradient vector flow,” in Short Proc. EURO-
GRAPHICS, pp. 581–588, 2008.

[21] G. Di Blasi and G. Gallo, “Artificial mosaics,” Visual Comput.,
vol. 21, no. 6, pp. 373–383, 2005.

[22] S. Battiato, G. Di Blasi, G. Farinella, and G. Gallo, “A novel
technique for opus vermiculatum mosaic rendering,” in Proc.
14th Int. Conf. Central Eur. Comput. Graph., Vis. Comput. Vis.,
2006, pp. 133–140.

[23] S. Hiller, H. Hellwig, and O. Deussen, “Beyond stippling—meth-
ods for distributing objects on the plane,” Comput. Graph. Forum,
vol. 22, no. 3, pp. 515–522, 2003.

[24] K. Smith, Y. Liu, and A. W. Klein, “Animosaics,” in Proc. Symp.
Comput. Animation, 2005, pp. 201–208.

[25] K. Dalal, A. Klein, Y. Liu, and K. Smith, “A spectral approach to
NPR packing,” in Proc. 4th Int. Symp. Non-Photorealistic Animation
Rendering, 2006, pp. 71–78.

[26] B. Reinert, T. Ritschel, and H.-P. Seidel, “Interactive by-example
design of artistic packing layouts,” ACM Trans. Graph., vol. 32,
no. 6, p. 218, 2013.

[27] Y.-K. Lai, S.-M. Hu, and R. R. Martin, “Surface mosaics,” Visual
Comput., vol. 22, nos. 9–11, pp. 604–611, 2006.

[28] V. A. Dos Passos and M. Walter, “3D mosaics with variable-sized
tiles,” Visual Comput., vol. 24, nos. 7–9, pp. 617–623, 2008.

[29] V. Dos Passos and M. Walter, “3D virtual mosaics: Opus palla-
dium and mixed styles,” Visual Comput., vol. 25, no. 10, pp. 939–
946, 2009.

[30] H. C. da Gama Leit~ao and J. Stolfi, “A multiscale method for the
reassembly of two-dimensional fragmented objects,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 24, no. 9, pp. 1239–1251, Sep. 2002.

[31] Q.-X. Huang, S. Fl€ory, N. Gelfand, M. Hofer, and H. Pottmann,
“Reassembling fractured objects by geometric matching,” in Proc.
ACM SIGGRAPH, 2006, pp. 569–578.

[32] C. Toler-Franklin, B. Brown, T. Weyrich, T. Funkhouser, and S.
Rusinkiewicz, “Multi-feature matching of fresco fragments,”
ACM Trans. Graph., vol. 29, no. 6, pp. 185:1–185:12, Dec. 2010.

[33] Z. Chen, Z. Yuan, Y.-K. Choi, L. Liu, and W. Wang, “Variational
blue noise sampling,” IEEE Trans. Vis. Comput. Graph., vol. 18,
no. 10, pp. 1784–1796, 2012.

[34] L. Prasad, “Morphological analysis of shapes,” CNLS Newslett.,
vol. 139, pp. 1–18, 1997.

[35] R. Dyer, H. Zhang, and T. M€oller, “Delaunay mesh construction,”
in Proc. Symp. Geom. Process., 2007, pp. 273–282.

[36] S. Toledo, “Extremal polygon containment problems,” in Proc.
Symp. Comput. Geom., 1991, pp. 176–185.

[37] R. Byrd, J. Nocedal, and R. Waltz, “Knitro: An integrated package
for nonlinear optimization,” in Large-scale Nonlinear Optimization,
New York, NY, USA: Springer, 2006, pp. 35–59.

[38] J. Munkres, “Algorithms for the assignment and transportation
problems,” J. Soc. Ind. Appl. Math., vol. 5, no. 1, pp. 32–38, 1957.

[39] J. Ho, A. Peter, A. Rangarajan, and M. Yang, “An algebraic
approach to affine registration of point sets,” in Proc. 12th Int.
Conf. Comput. Vis., 2009, pp. 1335–1340.

[40] L.-P. Fritzsche, H. Hellwig, S. Hiller, and O. Deussen, “Interactive
design of authentic looking mosaics using Voronoi structures,” in
Proc. 2nd Int. Symp. Voronoi Diagrams Sci. Eng., 2005, pp. 1–11.

Wenchao Hu received the BEng degree in com-
puter science from the Shandong University. He
is currently working toward the PhD degree in
computer science at The University of Hong
Kong. His research interests include computer
graphics and computational geometry.

Zhonggui Chen received the BSc and PhD
degrees in applied mathematics from the Zhe-
jiang University, in 2004 and 2009, respectively.
He is an associate professor at the Department
of Computer Sciences, School of Information Sci-
ence and Technology, Xiamen University, China.
His research interests include computer graphics
and computational geometry.

Hao Pan received the BEng degree in software
engineering from the Shandong University, and
the PhD degree in computer science from The
University of Hong Kong. He is currently a
researcher with the Microsoft Research Asia. His
research interests include computer graphics and
computational geometry.

Yizhou Yu received the PhD degree from the
University of California, Berkeley, in 2000. He is
currently a full professor at the Department of
Computer Science, The University of Hong Kong,
and an adjunct professor at the University of Illi-
nois, Urbana-Champaign. He received the 2002
National Science Foundation CAREER Award
and the Best Paper Award at 2005 and 2011
ACM SIGGRAPH/EG Symposium on Computer
Animation. He is on the editorial board of Com-
puter Graphics Forum and International Journal

of Software and Informatics. He is the program chair of the Pacific
Graphics 2009, Computer Animation and Social Agents 2012, and has
served on the program committee of many leading international confer-
ences, including SIGGRAPH, SIGGRAPH Asia, and International Con-
ference on Computer Vision. His current research interests include data-
driven methods for computer graphics and vision, digital geometry proc-
essing, video analytics, and biomedical data analysis.

1312 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 22, NO. 3, MARCH 2016

Eitan Grinspun received the BASc degree in
engineering science from the University of Tor-
onto and the PhD degree in computer science
from the California Institute of Technology, in
1997 and 2010, respectively. He is an associate
professor of computer science at the Columbia
University, and the director of the Columbia Com-
puter Graphics Group. He was a professeur dUni-
versite Invite in Paris at the lUniversite Pierre et
Marie Curie in 2009, and a research scientist at
the Courant Institute of Mathematical Sciences in

2003-2004. His research seeks to discover connections between geom-
etry, physics, and computation, typically with applications to computer
graphics. He is an Alfred P. Sloan research fellow and US National Sci-
ence Foundation (NSF) CAREER Award recipient, and was previously
an NVIDIA fellow and a Caltech Everhart Distinguished lecturer. The
technologies developed by his laboratory are used in consumer software
such as Adobe Photoshop and Illustrator, at film studios such as Disney,
Pixar, and Weta Digital, and in physics laboratories at institutions such
as MIT and the Universite Paris VI. His work has been profiled in The
New York Times, Scientific American, and Popular Science (Brilliant 10).

Wenping Wang received the PhD degree from
the University of Alberta, Edmonton, Canada. He
is a professor and the department head at the
Department of Computer Science, The University
of Hong Kong, Pokfulam. His research interests
include computer graphics, visualization, and
geometric computing. His current research inter-
ests include mesh generation and surface model-
ing for architectural design. He is a journal
associate editor of Computer Aided Geometric
Design, Computers and Graphics, and IEEE

Transactions on Visualization and Computer Graphics, and the program
co-chair of several international conferences, including Pacific Graphics
2003, ACM Symposium on Physical and Solid Modeling (SPM 06), Con-
ference on Shape Modeling (SMI 09), and the conference chair of Pacific
Graphics 2012 and SIGGRAPH Asia 2013. He is a member of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

HU ET AL.: SURFACE MOSAIC SYNTHESIS WITH IRREGULAR TILES 1313

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

