
Global Optimization of Centroidal Voronoi
Tessellation with Monte Carlo Approach

Lin Lu, Feng Sun, Hao Pan, and Wenping Wang

Abstract—Centroidal Voronoi Tessellation (CVT) is a widely used geometric structure in applications including mesh generation,

vector quantization and image processing. Global optimization of the CVT function is important in these applications. With numerical

evidences, we show that the CVT function is highly nonconvex and has many local minima and therefore the global optimization of the

CVT function is nontrivial. We apply the method of Monte Carlo with Minimization (MCM) to optimizing the CVT function globally and

demonstrate its efficacy in producing much improved results compared with two other global optimization methods.

Index Terms—Centroidal Voronoi tessellation, global optimization, Monte Carlo with minimization

Ç

1 INTRODUCTION

A Centroidal Voronoi Tessellation (CVT) is a special
Voronoi tessellation of a domain in which every site

coincides with the centroid of its Voronoi cell. Equivalently,
a CVT is characterized by a critical point (i.e., a gradient
vanishing point) of a certain CVT energy function, which we
will discuss in detail shortly. Several methods, including
Lloyd’s method [1] and MacQueen’s method [2] have been
proposed for CVT computation. Liu et al. [3] prove that the
CVT function is C2 on a convex domain and present a quasi-
Newton method to achieve significant acceleration over
previous methods by one order of magnitude. It is noted,
however, that the CVT function has many local minimizers.
Most existing methods for CVT computation focus on fast
computation of local minimizers. The problem of how to
compute improved local minimizers via global minimization
of the CVT function has not been investigated.

Global optimization of the CVT function can benefit many
applications, including mesh generation, scientific comput-
ing, and image processing [4], [5]. We now use a simple
example to show its application in mesh generation. Fig. 1
shows an example in mesh generation using the CVT.
Starting from some random initialization, a locally minimal
CVT (Fig. 1a) is generated by the quasi-Newton method in
[3], and Fig. 1c shows its dual triangle mesh. With the global
optimization scheme proposed in the present paper, an
improved local minimizer (Fig. 1b) and its dual triangle mesh
(Fig. 1d) are generated. Fig. 1e compares histograms of
energies of all cells in the two CVTs in Figs. 1a and 1b; Fig. 1f
compares histograms of the smallest angles of the triangles of
the two corresponding meshes in Figs. 1c and 1d.

From this simple example, we can see that our global
optimization method improves the CVT result greatly by
eliminating most interior nonhexagonal cells, leading to a
better triangle mesh with more regular vertices. The smallest
angle in each triangle of the mesh generated by our method is
closer to 60 degrees, indicating that the triangles have
become more regular. According to the celebrated Gersho’s
conjecture [6], energy values of all cells in a globally optimal
CVT are asymptotically equal. From Fig. 1e, we see that the
variance of energy values of cells in our CVT result is much
smaller than that of the local minimizer in Fig. 1a, an
evidence that our result is closer to a globally optimal CVT.

The contribution of this paper is the development of a
global optimization algorithm for minimizing the CVT
function to obtain much improved locally optimal CVTs as
compared with previous methods. As we will show by
numerical evidences, the CVT function is highly nonconvex
and hence it is quite challenging to find a global minimizer of
the CVT function. Due to the nonconvexity of the CVT
function and its large number of local minima, traditional
global minimization approaches, such as direct Monte Carlo
sampling approach, cannot be applied to the CVT minimiza-
tion directly. The term “Monte Carlo with Minimization
(MCM)” is used by Li and Scheraga [7] for their method for
solving the protein folding problem. We adapt their algo-
rithm for CVT computation and so also follow this name. The
difference between this method and a conventional Monte
Carlo method is that only local minimizer are considered as
sampling points in the former, while any point can be used in
the latter. The major issue in adapting the MCM approach
and developing a practical algorithm for global CVT
computation is the characterizing of several key parameters
in the MCM approach. By investigating the specific proper-
ties of the CVT function, we have conducted a systematic
study on how to choose these parameters to develop an
efficient global optimization method for CVT computation.

2 LITERATURE REVIEW

2.1 Centroidal Voronoi Tessellation

Given a compact domain � in IRN and a set X ¼ fxigni¼1

of n sites in �, a Voronoi tessellation of � is defined to be
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the collection of Voronoi cells f�igni¼1 of the sites fxigni¼1,
where

�i ¼ fx 2 �jkx� xik � kx� xjk; 8j 6¼ ig;

and k � k denotes the Euclidean norm.
A Voronoi tessellation is called a centroidal Voronoi

tessellation [4] if xi ¼ ci; i ¼ 1; . . . ; n, where

ci ¼
Z

x2�i

�ðxÞxd�

�Z
x2�i

�ðxÞd�

is the centroid of the Voronoi cell �i of xi and �ðxÞ is the
density function defined over the domain �.

Equivalently, a CVT is also defined as a critical point of
the following CVT function [4]:

F ðXÞ ¼
Xn
i¼1

Z
x2�i

�ðxÞkx� xik2d�:

In the following,
R

x2�i
�ðxÞkx� xik2d� is called the energy

value of the Voronoi cell of the site xi.
We denote the set of sites X ¼ fxigni¼1 as an ordered set

X ¼ ðxiÞni¼1, which is an n-dimensional vector consisting of
the variables of the CVT function F ðXÞ.

A critical point of the CVT function F ðXÞ may be a
saddle point corresponding to an indefinite Hessian of
F ðXÞ [3]. Saddle points are unstable and often undesirable
in practice. In this paper, we focus only on the CVTs
corresponding to local minimizers.

The computation of a local minimizer of the CVT
function has been well studied. A thorough review of
existing methods is out of the scope of this paper. We refer
to [5, Section 3] for a survey on computing local minimizers.
Here, we need to mention the following local-search
algorithm invoked in our global optimization scheme. Liu
et al. [3] prove that the CVT function F ðXÞ is C2 in any
convex domain with a C2 smooth density function and is
still C2 when the domain is nonconvex in most cases except
for some cases rarely encountered in practice and present
an efficient quasi-Newton method for accelerating CVT
computations. In practice, such local minimizers are often
far from being globally optimal, as will be shown in our
experiments later.

2.2 Globally Optimal CVT

The computation of a global minimizer of the CVT function is
still outstanding in literature. However, there are some
theoretical results on the global minimizers of the CVT
function. Gersho [6] conjectures that, asymptotically, all
Voronoi cells assume the same shape in an optimal CVT.
Tóth [8] proves that, asymptotically, the Voronoi cells of an
optimal 2D CVT in a convex domain assume a uniform
regular hexagonal shape, and thus proves the conjecture in
two dimensions. Du and Wang [9] present numerical
evidence that supports the conjecture in three dimensions.
According to the widely accepted Gersho’s conjecture, all the
sites xi in X ¼ fxigni¼1 have asymptotically equal energy
values

R
x2�i

�ðxÞkx� xik2d� in a globally optimal CVT; this
is called the energy equidistribution principle in [4] and [10].

2.3 Global Optimization

A nonconvex function may have more than one local
minimizer and algorithms based on local search converge
only to a local minimizer. Finding the global minimizer or a
good local minimizer within a reasonable amount of time is
challenging. Existing global optimization algorithms can be
classified into two categories: deterministic algorithms and
stochastic algorithms. Deterministic algorithms are suitable
when the characteristics of solutions are known. Then, the
search space can be enumerated to find the global
minimizer. Therefore, deterministic algorithms often be-
come impractical when the size of the problem grows large,
typically with several thousand variables [11], since the
number of sample points in the search space is exponential
in the number of variables. For a large-scale global
optimization problem, stochastic algorithms are more
efficient than deterministic algorithms.

Stochastic optimization algorithms have attracted exten-
sive research in recent decades. Popular algorithms include
Monte Carlo methods [12], Particle Swarm Optimization
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Fig. 1. Using the CVT to mesh a regular octagon domain with 2,000
sites. (Nonhexagonal cells highlighted in gray). (a) A locally minimal
CVT and (c) the dual triangle mesh. (b) and (d) Show an improved local
minimizer by our global optimization algorithm and its dual triangle
mesh. The cell energy distributions of the two CVT’s are shown in (e),
and distributions of the smallest angles of the triangles of the two
meshes are shown in (f). There are 1,849 interior vertices in both triangle
meshes; among these, the mesh in (d) has 1,767 regular vertices (i.e.,
having valence six) and the mesh in (c) has only 1,631 regular vertices.



(PSO) [13], evolutionary algorithms [14], the Monte Carlo
with minimization method [7], [15], [16] and Simulated
Annealing (SA) [17], [18]. Interested readers are referred to
[19], [20]. As we will see the MCM method can be adapted
for global optimization of a continuous nonconvex objective
function with many local minima. In this paper, we apply
the MCM approach to optimizing the CVT function.

3 PROPERTIES OF CVT FUNCTION

3.1 Nonconvexity of CVT Function

Before presenting our global optimization method, we shall
show by numerical evidences that the CVT function is
highly nonconvex and has many local minima. Consider a
2D example with n ¼ 100 sites in the square ½�1; 1�2 with
constant density �ðxÞ � 1. Since it is difficult to visualize the
complexity of the graph of F ðXÞ defined in such high
dimensions, we instead show a clipped sectional view of
F ðXÞ in Fig. 2. Starting from a set of sites corresponding to
X0, we choose two linearly independent vectors V0 and V1

in IR2n to form a 2D subspace in IR2n and plot the graph
of fðu; vÞ ¼ F ðX0 þ u�V0 þ v�V1Þ; u; v 2 ½�1; 1�, where
jV0j2 ¼ 4:2510 and jV1j2 ¼ 4:2757. Fig. 2 shows the contour
of this 2D section of F ðXÞ centered at the point X0 in IR2n.
Here, darker color indicates a lower function value. It is easy
to see the extraordinary complexity of the landscape of
F ðXÞ and that F ðXÞ is highly nonconvex, suggesting the
difficulty in global optimization of the CVT function F ðXÞ.

3.2 Number of Local Minimizers of CVT Function

Next, we demonstrate that the CVT function can have a
large number of local minima. Consider the square domain
� : ½�1; 1�2 with constant density �ðxÞ � 1. Recalling that

the variables of the CVT function are considered as a vector
X in IR2n, a permutation of the sites corresponds to a
permutation of the variables, therefore producing the same
set of sites. Hence, the same CVT. We remove this
redundancy by treating two vectors as the same if they
are equal up to a permutation of the sites. Similarly, we
remove the redundancy due to the symmetries of the square
domain. In implementation, we regard two point sets as the
same if their Hausdorff distance is less than 1e-12.

We define a trial to be the process of running a local
search scheme, which is the L-BFGS method in the present
case, to compute a local minimum from a randomly
generated initial set of n sites in the square domain. With
different numbers n of sites, we perform 5,000 trials and
record the number of distinct local minimizers resulting
from these 5,000 trials. Then, we do the same with 10,000
trials. The results are listed in Table 1. We see that when the
number of sites is less than 20, the number of distinct
minimizers observed is rather stable when the number of
trials changes from 5,000 to 10,000, suggesting that they are
nearly the set of all possible local minimizers. When the
number of sites grows up to 100, almost all the 10,000 trials
lead to distinct local minimizers. This suggests there are a
large number of distinct local minimizers of the CVT
function F ðXÞ in these cases.

4 GLOBAL ALGORITHM FOR CVT COMPUTATION

We shall first briefly introduce the Monte Carlo with
minimization method [7], [15], explain why it is suitable for
solving the CVT optimization problem, and discuss how to
apply it to global optimization of the CVT function F ðXÞ.

Global minimization of a nonconvex objective function
with many local minima is a difficult problem. Applying
conventional global optimization methods directly does not
work well, since these methods often deal with discrete
optimization problems. Given a continuous function,
randomly sampling often finds only a point which is not
a local minimizer, thus rendering these methods inefficient.
Li and Scheraga [7] devise the MCM approach that applies
the random sampling idea to global optimization and
guarantees only local minimizers are considered. As a
global optimization approach, MCM overcomes the ineffi-
ciency of the conventional Monte Carlo method, and has
successfully been applied to solving various optimization
problems in computational and applied chemistry, compu-
tational biology, and computational physics.

The main idea of the MCM method is to transform a
continuous optimization problem to a discrete one by
considering all local minimizers of the objective function as
the feasible set. In each iteration, the method may jump
from the current local minimizer to a new local minimizer.
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Fig. 2. An illustration of the neighboring landscape of X0.

TABLE 1
The Number of Observed Distinct Local Minimizers of the CVT Function



If the new local minimizer is better than the current
minimizer, then we accept the new minimizer as the
current minimizer. Otherwise we accept it with a pre-
defined probability. As the method runs to the converging
stage, the probability drops gradually to zero and finally the
best minimizer found so far is accepted as the final result.

The framework of the MCM method for a continuous
optimization problem is as follows:

MCM Algorithm to minimize F ðXÞ
1) Initialization—T0, K, X X0, X X0, k 0.

2) While the termination condition is not met, i.e., k < K:

. Perturb X and minimize to X�;

. �F ¼ F ðX�Þ � F ðXÞ. If �F < 0, then X X�; else
if expð��F=TkÞ > random½0; 1�, then X X�;

. If F ðX�Þ < F ðXÞ, X X�;

. Decrease Tk;

. k kþ 1.

3) Return X.

In this framework, each iteration includes three steps:
Monte Carlo sampling, energy minimization, and examina-
tion by the Metropolis criterion. We call each iteration an
update in the following. The probability of accepting a
minimizer with higher energy value is P ¼ e�

�F
Tk , where �F

is the increment of the energy function and Tk is a
parameter, which is also called system temperature in the
MCM method [15]. We use X to store the best local
minimizer found so far.

Besides the local search scheme invoked in the inner loop,
there are several important parameters in the MCM method.

. The initial temperature T0.

. The decrement function of Tk.

. The Perturbation magnitude.

. The termination condition, in terms of K, the total
number of updates.

All these parameters are essential ones affecting the
performance of the MCM method. We are going to adopt
the MCM framework in global optimization of the CVT
function F ðXÞ and show how to choose these parameters.

4.1 Local Search

We employ the L-BFGS method in [3], a quasi-Newton
method, to compute a local minimizer X�. To find an
accurate local minimum, one typically needs to set kgkkXk �
10�12 as the termination condition, where kgk is the norm of
the gradient and kXk is the norm of variables. To improve
efficiency, we may just compute sufficiently good local
minimizers by setting a relatively larger threshold, say
kgk
kXk � 10�7, as the termination condition of the L-BFGS
method in each round. After the MCM process, the local
minimizer will be minimized using the more accurate
condition kgk

kXk � 10�12. We will show by experimental
results, in Section 5.3, that this scheme of early termination
of local search in the intermediate rounds saves much time
while having little effect on the final minimization result.

4.2 Initial Temperature T0

The initial temperature T0 should be high enough so that
MCM may successfully move to a neighboring minimizer
even if the function value increased. If T0 is too low, MCM

will not be able to jump out of the current basin, thus
reducing to a local minimization approach. If T0 is too high,
MCM will accept all neighboring minimizers without
selection, defeating the purpose of optimization. Mean-
while, since Tk is the denominator and �F is the numerator
of the ratio in the exponent to control the probability, the
choice of T0 depends on the magnitude of function values
and hence is problem-specific. We follow the idea in [21] to
choose T0: starting from an initial minimizer, we find some
neighboring minimizers and compute the average incre-
ment of the energy function as �F and then T0 is set to
��F=lnðP0Þ, where P0 ¼ 0:8. In other words, T0 is chosen in
such a way that the probability of jumping out to a local
minimizer of a higher value is P0 ¼ 0:8. Our experiments
confirm that this value of T0 works well.

4.3 Decrement Function of Tk
The temperature decrement function (also called cooling
function) influences both the speed of the optimization and
the optimality of the final result. If the temperature decreases
too quickly, it leads to a fast search but the algorithm may
easily get stuck at a poor local minimum. On the other
hand, if the temperature decreases too slowly, the algorithm
usually requires a long time to converge. There exists a
wide range of selections for the decrement function [22]:
one is the function Tkþ1 ¼ �Tk, where � is a constant,
empirically between 0.8 and 0.9. Another is the variant of
the above function Tk ¼ T0ð1� k=KÞr, where k is the
number of updates so far and r is a constant, typically 1,
2, 4, or 6, and K is the total number of updates to be
performed. These functions and parameters are tried in our
experiments and we find that Tk ¼ T0ð1� k=KÞ6 works best
for both constant and nonconstant density function cases.
Fig. 3 shows a result of 500 sites in a square domain ½�1; 1�2
with a constant density function �ðxÞ � 1 with different
settings of the cooling function. We use the function Tk ¼
T0ð1� k=KÞ6 as the decrement function in all the experi-
ments in this paper.

4.4 Perturbation Magnitude

The magnitude of the perturbation is also critical to the
effectiveness of the MCM algorithm. If the neighborhood
size is too small, the algorithm may stop at a near and
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Fig. 3. F ðXÞ against the number of updates with different cooling
functions.



probably bad local minimizer. On the other hand, a too

large neighborhood size would amount to restarting from a

random initialization.
For our objective function, which is the CVT function F ðXÞ,
we use the size of Voronoi cells as a reference to determine

the perturbation magnitude for each site. The figure on the

right illustrates the Voronoi cell of a site in 2D. The black

point is the site and gray points are Voronoi vertices. Let wi
denote the average of the edge length of the edges (i.e.,

dashed edges) incident to the site xi. Clearly, wi depends on

its corresponding Voronoi cell, and therefore is different for

different sites. Let h be a constant to be determined for all

sites. Then, we designate that X ¼ ðxiÞni¼1 is perturbed to

ðxi þ hwiriÞni¼1, where ri is a random vector in ½�1; 1�2. Here,

hwi controls the magnitude of the perturbation, that is, the

neighborhood size for basin hopping. As fwigni¼1 is

computed from the Voronoi diagram, we will discuss how

to choose the suitable h in Section 5.1.

4.5 Termination Condition (K)

It is known that the MCM method converges to a global
minimizer with probability 1 if given infinite amount of
time [7]. However, in practice, we must stop running the
algorithm within a reasonable amount of time. We use the
total number of updates, K, as the termination condition.
We will discuss how to choose a suitable K in Section 5.2.

5 EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we present experimental results to demon-
strate the selection of some key parameters of the MCM
method, validate the effectiveness of our algorithm and
compare it with two other methods. All the experiments are
run on a workstation with an Intel Xeon 3.33 GHz CPU.

5.1 Selection of Neighborhood Size

We first show how different neighborhood sizes affect the
performance of the MCM method. In our first experiment, we
use 100 sites in a square domain ½�1; 1�2 with a constant
density function �ðxÞ � 1. Let h change from 0.2 to 1.0 by an
increment of 0.2 in each step. The result is shown in Fig. 4. The
histogram of 10,000 local minima computed from random
initializations is shown in (a), appearing in a normal
distribution. For each h, we perform 1,000 tests with the same
minimizer with the initial function value F ðXÞ ¼ 2:6295e-2
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Fig. 4. An example of 100 sites in a square domain ½�1; 1�2 with density
function �ðxÞ � 1. (a) The distribution of 10,000 random local minima.
(b)-(f) The distribution of generated neighbors from a local minimizer
with function value F ðXÞ ¼ 2:6295e-2 when h ¼ 0:2; 0:4; 0:6; 0:8; 1:0,
respectively. Nearby minimizers such generated are grouped into bins
with the value 2.630e-2 marked by an arrow.

Fig. 5. An example of 2,000 sites in a 2D domain of a regular hexagon
with the bounding box ½�2; 2� � ½�1:732; 1:732�. The density function �ðxÞ
is e�20ðx2þy2Þ þ 0:05 sin2ð�xÞ sin2ð�yÞ. (a) The distribution of 1,000 random
local minima. (b)-(f) The distribution of generated neighbors from the
start local minimum F ðXÞ ¼ 1:4408e-4 (marked with the arrows) with
h ¼ 0:6; 0:8; 1:0; 1:2; 1:4, respectively.



and record the function values of nearby minimizers. These
values are plotted in (b) to (f). When h is 0.2 or 0.4, nearby
minimizers have very similar function values to that of the
initial minimizer. Whenh is 0.6, these nearby minimizers lie in
two intervals,with similar distribution. Whenh is 0.8,we have
a larger range and most of the function values have smaller
values than the initial minimizer. Finally, when h is 1.0, the
range is nearly as large as that of the randomly generated local
minima. In this context, we conclude that the best h is 0.8,
because given one chance to perturb the current local
minimizer to a both new and nearby minimizer, the
probability is highest when h is 0.8. Our experiments also
verify this conclusion.

When the density function is not constant, it is more
difficult to find a universally acceptable h. Although fwigni¼1

is dependent on the Voronoi diagrams, which reflects the
influence of the density function already, our experiments
show that different density functions need different values
of h to perturb the current minimizer to a new one. It is
nontrivial to find the relations between the density
functions and the magnitude of perturbation.

We show one example with nonconstant density func-
tion in Fig. 5: 2,000 sites in a regular hexagon domain with
bounding box ½�2; 2� � ½�1:732; 1:732�. The density function
�ðxÞ is e�20ðx2þy2Þ þ 0:05 sin2ð�xÞ sin2ð�yÞ. The value of h
increases from 0.6 to 1.4 by 0.2 in each step. The
initialization is a local minimizer with the function value
F ðXÞ ¼ 1:4408e-4. (a) Shows the histogram of function
values of 1,000 random minimizers. And (b) through (f)
shows, respectively, the distribution of 1,000 tests with h
from 0.6 to 1.4, increased by 0.2 each time. From the
neighborhood distribution, we infer that setting h to a value

from 1.0 to 1.4 may all work well. Our experiments show
the slight differences caused by different values and suggest
1.2 as the best value. Hence, we use h ¼ 1:2 for this density
function in the later examples.

Figs. 6, 7, and 8 show three examples with different
density functions. In each figure, we show a typical local
minimizer, a typical improved minimizer by our algorithm in
one run and the best minimizer observed in 100 runs. Energy
curves of different values of h are plotted in the subfigure (d).
The subfigure (e) shows the comparison of (a), (b), and (c).
From these figures, we see that a typical improved minimizer
has similar distributions with the best minimizer observed in
100 runs, both of which are much better than a typical local
minimizer, in terms of the equal distribution of cell energies.
(K ¼ 200 for all the three examples.)

5.2 Selection of Termination Condition

Then, we show the influence of the values of K, the
termination condition, in some scenarios. As listed in
Table 2, we test three examples by increasing K gradually
from 100 to 3,000. The result is the average value of
100 runs of our MCM algorithm. It shows that a larger K
leads to better results as expected and the results become
stable after K reaches some certain number.

Due to the relatively small number of sites and the
boundary effect, the Gersho’s conjecture is not applicable to
the above instances and the global minimizers are unknown
to us, which makes it difficult to evaluate the gap between the
improved minimizers obtained by some reasonable expense,
i.e., K, and the true global minimizers. To circumvent this
difficulty, we construct an example having hexagonal
patterns with constant density function, which has the
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Fig. 6. The result of 500 sites in a square domain ½�1; 1�2 with
density function �ðxÞ � 1. (a) The tessellation of the starting local
minimum, F ðXÞ ¼ 5:2041e-3. (b) A typical improved local minimum
with h ¼ 0:8, F ðXÞ ¼ 5:1771e-3. (c) The best minimum observed with
h ¼ 0:8, F ðXÞ ¼ 5:1736e-3. (d) F ðXÞ against the number of updates of
different h values. (e) The cell energy distributions in (a), (b), and (c).
Nonhexagonal cells are highlighted in gray.

Fig. 7. The result of 444 sites in a square domain with the bounding
box ½�2; 2� � ½�2; 2� with density funct ion �ðxÞ ¼ e�20ðx2þy2Þ þ
0:05 sin2ð�xÞ sin2ð�yÞ. (a) The tessellation of the starting local
minimum, F ðXÞ ¼ 4:0323e-4. (b) A typical improved local minimum
with h ¼ 0:8, F ðXÞ ¼ 3:3833e-4. (c) The best minimum observed with
h ¼ 0:8, F ðXÞ ¼ 3:3774e-4. (d) F ðXÞ against the number of updates of
different h values. (e) The cell energy distributions in (a), (b), and (c).



known global minimizer. As shown in Fig. 9, after applying
our MCM algorithm on the local minimum (a) (resp. (c)), we
always achieve the global minimum (b) (resp. (d)) with
K ¼ 200. However, when the number of sites becomes large,
the global minimum is hard to reach with the same K. As
shown in Fig. 10, given the local minimum (a) as the input, (b)
is the result withK ¼ 200, and (c) is the result withK ¼ 400.

5.3 Local Search

Early termination when computing a local minimizer in the
intermediate rounds of MCM saves much time while having
little effect on the final result. We set kgk

kXk < 1e-7 as the

stopping criterion of the L-BFGS method in the intermediate
rounds. Now, we show how this setting does accelerate
computation as shown by the experimental results in Table 3.
Here, each result is the average value of 100 runs of the
algorithm. Column Flocal is the average energy value of the
local minimizers computed from randomly initialized
generators, with the time cost in column tlocal. The value of
h used is listed in column h. Columns FMCM200 and tMCM200

show the average energy value and time for our MCM
algorithm to improve the local minima in Flocal. Columns
FMCM200Fast and tMCM200Fast list the results of the algorithm
which finds only an approximate minimizer in each iteration
(i.e., using the stopping criterion kgkkXk < 1e-7). We can see such
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Fig. 9. Comparison between our improved local minimum and the global
minimum. (a) A random local minimum with 400 sites in a 20� 20
hexagonal pattern domain with the bounding box ½�17:754;
17:754� � ½�15:25; 15:25�, F ðXÞ ¼ 4:3658eþ2. (b) The improved local
minimum of (a), F ðXÞ ¼ 4:3301eþ2. (c) A random local minimum with
900 sites in a 30� 30 hexagonal pattern domain with the bounding box
½�26:414; 26:414� � ½�22:75; 22:75�, F ðXÞ ¼ 9:8210eþ2. (d) The improved
local minimum of (c), F ðXÞ ¼ 9:7428eþ2. Nonhexagonal cells are
highlighted in gray.

Fig. 8. The result of 1,024 sites in a square domain ½�1; 1�2 with density
function �ðxÞ ¼ e�10ðx2þy2Þ. (a) The tessellation of the starting local
minimum, F ðXÞ ¼ 6:1509e-5. (b) A typical improved local minimum with
h ¼ 0:6, F ðXÞ ¼ 6:1317e-5. (c) The best minimum observed with h ¼ 0:6,
F ðXÞ ¼ 6:1293e-4. (d) F ðXÞ against the number of updates of different h
values. (e) The cell energy distributions in (a), (b), and (c).

TABLE 2
Results of Some Examples with Different K of the MCM Method

The examples on the first two rows are for the one in Figs. 4 and 7, respectively. The example on the third row has the same setting with the one in
Fig. 8 except that the number of sites used here is 256.

TABLE 3
Results of Some 2D Examples

�1ðxÞ ¼ e�20ðx2þy2Þ þ 0:05 sin2ð�xÞ sin2ð�yÞ and �2ðxÞ ¼ e�10ðx2þy2Þ.

Fig. 10. Comparison between our improved local minimum and the
global minimum. (a) A random local minimum with 2,500 sites in a 50�
50 hexagonal pattern domain with the bounding box ½�43:734;
43:734� � ½�37:75; 37:75�, F ðXÞ ¼ 2:7256eþ3. (b) The improved local
minimum of (a) with K ¼ 200, F ðXÞ ¼ 2:7080eþ3. (c) The improved local
minimum of (a) with K ¼ 400, F ðXÞ ¼ 2:7071eþ3. Nonhexagonal cells
are highlighted in gray.



treatment saves a lot of time, especially when the number of
sites is large, with only small sacrifice on the quality of the
final result. (K ¼ 200 for all the listed examples.)

5.4 Comparisons with Other Methods

We point out that the problem of customizing different
global optimization techniques for CVT computation is
wide open and the MCM method may not be the most
effective one.

In this paper, we only compare our MCM algorithm with
two other methods: the multistart method [23] and the
descent method [24]. In a local phase of the multistart
method, one starts from a random initialization and
minimizes it to a local minimizer. In the global phase, the
multistart method runs local phases K times, where K is a
user-specified parameter and returns the best result of
them. The descent method is similar to the MCM method,
but with the difference that the descent method jumps to a
new minimizer only if F ðXÞ decreases.

We choose three examples with different density func-
tions and first randomly generate 100 local minima,
respectively. Then, we carry out two types of experiments.
Fig. 11 shows the results of 100 times of tests starting from
one local minimizer for the three methods, respectively.
Figs. 12 and 13 show the results of 100 times of tests starting
from random local minimizer each time for the three
methods, respectively. For consistency of comparison, we
set K to 200 for all the three methods. The computational
time of the three compared methods is nearly the same
because the major computational expense is all local search,
which follows the same procedure, i.e., L-BFGS. The
difference is the MCM method needs to examine the local
minimizer by the Metropolis criterion and compute the
cooling function in each update that costs negligible time. It
is not hard to see that our MCM method outperforms the

descent method, and our method and the descent one are
both better than the multistart method.

5.5 Results in Mesh Generation and Optimization

We give an example of unconstrained mesh generation of a
general 2D domain in Fig. 14. Since the boundary constraint
is specific to 2D mesh generation [25], we do not use a
specific strategy to handle the boundary and simply take
the dual triangle mesh of the minimal CVT to evaluate our
global algorithm. As the result shows, the variance of the
energy values of cells in our CVT result is much less than
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Fig. 11. Comparison of different methods. The example has 2,000 sites
in an octagon domain as shown in Fig. 1. (a) The distribution of 100 local
minimizers from randomly sampled generators. (b)-(d) The distribution
of the results starting from the local minima F ðXÞ ¼ 1:0364e-2 (marked
with the arrows) with the multistart method, descent method, and our
MCM method by h ¼ 0:8 and the average energy value of three methods
are 1.0348e-2, 1.0322e-2, and 1.0320e-2, respectively.

Fig. 12. Comparison of different methods. The example has 444 sites in
a square domain as shown in Fig. 7. (a) The distribution of 100 local
minimizers from randomly sampled generators. (b)-(d) The distribution
of the results starting from a local minima in (a) with the multistart
method, descent method, and our MCM method by h ¼ 1:2 and the
average energy value of three methods are 3.7168e-4, 3.3845e-4, and
3.3833e-4, respectively.

Fig. 13. Comparison of different methods. The example has 256 sites in
a square domain ½�1; 1�2 with density function �ðxÞ ¼ e�10ðx2þy2Þ. (a) The
distribution of 100 local minimizers from randomly sampled generators.
(b)-(d) The distribution of the results starting from the local minima in (a)
with the multistart method, descent method, and our MCM method by
h ¼ 0:6 and the average energy value of three methods are 2.4190e-4,
2.4166e-4, and 2.4160e-4, respectively.



that of the local minimizer and the dual mesh quality is
much better concerning the smallest angle of each triangle.

We also show some 3D remeshing results. The remesh-
ing result of a given mesh is the dual triangle mesh
extracted from a critical point of the Constrained CVT
(CCVT) function [26]. We employ the fast and exact method
proposed by Yan et al. [27] to compute the Restricted
Voronoi Diagram (RVD) and L-BFGS method to minimize
the CCVT function and then compare the local minimum
with the improved one by our global optimization algo-
rithm. The parameters in the MCM framework such as the
initial temperature and the cooling function are chosen
following the earlier discussions. Particularly, the para-
meters fwigni¼1 that indicate the perturbation magnitude are
specified to be the square root of the area of the constrained
Voronoi cell of each site. The parameter ri is changed into a
random vector in ½�1; 1�3 accordingly. The parameter h is
set to 0.8, which is empirically good. (Refer to Section 4.4.)
Since the RVD computation in 3D is more time consuming

than 2D cases, we set K to 100 in the experiments to get
results in a reasonable amount of time. Empirically, our
global method needs about 30 times of the time used for a
single run to optimize the sites to a local minimizer. Figs. 15
and 16 show two examples with constant density. Fig. 17
shows an example with the density function �ðxÞ ¼ KðxÞ3,
where KðxÞ is the Gaussian curvature at x. The subfigures
(c) and (d) give the comparison of the cell energy of the
Voronoi tessellations and the smallest angle of the remesh-
ing result from a local minimizer and the improved
minimizer by our algorithm, respectively. We can see that
our global optimization achieves better results.

6 CONCLUSION

We have proposed a global optimization framework based
on the MCM method for the CVT function, which is highly
nonlinear and nonconvex. The framework starts from a
local minimizer of the CVT function and improves it
greatly. Experiments show our algorithm is effective.

Further study is needed to improve the selection of
perturbation neighborhood size in the case of nonconstant
density functions. Investigating more effective global opti-
mization methods for computing CVT and making a
comprehensive comparison is also regarded as the future
work.
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Fig. 14. Using the CVT to mesh a general 2D domain with 2,000
sites. (a) The dual triangle mesh of a local minimizer. (b) The dual
triangle mesh of the improved local minimizer by our global
optimization algorithm. The cell energy distributions of the two CVTs
in (a) and (b) are shown in (c). The distributions of the smallest angle
of the triangles of the two meshes are shown in (d). The mesh in
(b) has 1,669 regular vertices and the mesh in (a) has 1,594 regular
vertices. K ¼ 100 and h ¼ 1:2.

Fig. 15. Remeshing result of the bone model with 3,000 sites. (a) The
dual triangle mesh of a local minimizer. (b) The dual triangle mesh of the
improved local minimizer by our global optimization algorithm. The cell
energy distributions of the two CCVTs in (a) and (b) are shown in (c).
The distributions of the smallest angle of the triangles of the two meshes
are shown in (d). The mesh in (b) has 2,806 regular vertices and the
mesh in (a) has 2,664 regular vertices. h ¼ 0:8.
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