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Figure 1: A series of CMC surfaces with the same boundary of two interlaced rings. They are generated with our method by increasing
a parameter t that controls the force imposed on the surface and thereby achieving different surface curvatures. The first one is a minimal
surface with t = 0.

Abstract

We present a new method for modeling discrete constant mean
curvature (CMC) surfaces, which arise frequently in nature and
are highly demanded in architecture and other engineering appli-
cations. Our method is based on a novel use of the CVT (centroidal
Voronoi tessellation) optimization framework. We devise a CVT-
CMC energy function defined as a combination of an extended
CVT energy and a volume functional. We show that minimizing
the CVT-CMC energy is asymptotically equivalent to minimizing
mesh surface area with a fixed volume, thus defining a discrete
CMC surface. The CVT term in the energy function ensures high
mesh quality throughout the evolution of a CMC surface in an in-
teractive design process for form finding. Our method is capable of
modeling CMC surfaces with fixed or free boundaries and is robust
with respect to input mesh quality and topology changes. Experi-
ments show that the new method generates discrete CMC surfaces
of improved mesh quality over existing methods.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
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1 Introduction

Constant Mean Curvature (CMC) surfaces arise widely as natu-
ral or man made structures. Soap bubbles are CMC surfaces with
nonzero constant mean curvature and soap films are special CMC
surfaces with zero mean curvature, called minimal surfaces. Ten-
sile membrane structures in architecture can be modeled as minimal
surfaces [Brew and Lewis 2003a]. Pneumatic architectures, includ-
ing inflatable domes and enclosures, are modeled as CMC surfaces
as well [Smith 2003]. CMC surfaces have received much attention
in mathematics, with the goal to find new types of CMC surfaces
by employing the properties of symmetry, periodicity and so on.

Modeling CMC surfaces is an active research problem in shape
modeling. Computationally practical approaches to modeling CMC
surfaces try to find a discrete approximation, most commonly in the
form of a triangle mesh, to a CMC surface by optimizing some en-
ergy function. For example, a CMC surface can be computed as
a minimizer of the surface area functional subject to the constraint
of some fixed volume. This characterization of CMC surfaces has
given rise to several methods that compute CMC surfaces by solv-
ing a constrained optimization problem on a mesh surface.

A mesh surface is defined by mesh vertices and mesh connectiv-
ity, i.e., edges connecting the vertices. When using a mesh surface
for shape representation, two main criteria of mesh quality are the
distribution of mesh vertices and edge connectivity. High quality
meshes, in terms of mesh smoothness and the shape of face ele-
ments, are desired in many geometric processing tasks, such as nu-
merical simulation and estimation of differential surface properties.

Poor mesh quality is a major issue with existing methods for mod-
eling CMC surfaces. These methods lack a mechanism of optimiz-
ing mesh connectivity. Typically, such a method drives an initial
mesh to a final shape by updating only the positions of mesh ver-
tices while keeping the same edge connectivity of the initial mesh.
As a result, the final mesh is often a poor representation of the
true CMC surface intended due to the presence of poorly shaped
face elements [Brew and Lewis 2003b]. Improvement of mesh con-
nectivity via remeshing could be performed with user assistance or
as post-processing, but such an operation is neither automatic nor
consistent with the original energy minimization principle. Hence,
currently there is a lack of a unified and automatic method that can
optimize both vertex positions and edge connectivity in a consistent
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manner for modeling high quality discrete CMC surfaces.

Contributions. We propose a new method for modeling CMC
surfaces that optimizes both the mesh vertices and edge connectiv-
ity consistently by minimizing a novel energy function. This energy
is a combination of an extended CVT (centroidal Voronoi tessella-
tion) energy on a moving mesh surface and a volume functional.
We show that the minimizer of this new energy function is a CMC
surface with high mesh quality, as enforced by the CVT energy
term. We present an efficient numerical method for minimizing the
new energy function. Because of its inherent capability of opti-
mizing edge connectivity, our method maintains good mesh quality
for dynamic CMC surfaces during interactive design of CMC sur-
faces. The method is capable of modeling CMC surfaces without
boundaries, as well as those with free or fixed boundaries. It is
robust against radical changes of surface topology and shape. Ex-
periments show that this method generates discrete CMC surfaces
of better quality than by the existing methods.

2 Related Work

CMC surfaces. New CMC surfaces can be discovered using fun-
damental patches and the properties of symmetry and periodicity.
See [Kapouleas 1990] for an introduction to various mathematical
techniques for constructing new CMC surfaces. Oberknapp and
Polthier [1997] reduce the problem of CMC surface computation in
E3 to the problem of minimal surface computation in S3. However,
it is unclear how these methods can be implemented for modeling
CMC surfaces complying with a specified boundary, as required for
surface modeling in many applications.

Discrete representations, especially triangle meshes, are commonly
used by practical methods for computing and representing CMC
surfaces. A CMC surface is characterized as a surface minimal area
with a fixed enclosed volume. Several methods have been proposed
in the literature that apply this characterization to computing a dis-
crete CMC surface in the form of a triangle mesh. Brakke [1992]
computes a CMC surface by minimizing a functional defined as the
sum of mesh surface area and a multiple of volume enclosed by the
surface. Similarly, Polthier and Rossman [2002] define a discrete
CMC surface by equalizing mesh surface area gradient and volume
gradient with respect to mesh vertices. Smith [2003] instead min-
imizes the area of a mesh surface subject to the constraint of ob-
serving specified mean curvature on the mesh. Dziuk and Hutchin-
son [2006] use FEM to optimize the energy functional of surface
area plus a variable volume term to compute a surface with vari-
able mean curvature. Xu and Zhang [2008] compute CMC surfaces
by solving a geometric PDE defined on mesh surfaces. Most of
these methods assume a reasonable good initial mesh and are not
concerned about the mesh quality in terms of edge connectivity.

Similar to the approach taken by [Brakke 1992], [Polthier and Ross-
man 2002] and [Dziuk and Hutchinson 2006], our formulation is
also built upon characterizing a CMC surface as a minimizer of sur-
face area subject to the volume constraint. However, unlike these
methods that minimize only surface areas, we devise a novel func-
tional whose minimization optimizes both mesh surface area and
mesh connectivity in a consistent and unified manner. Our method
therefore yields high quality discrete CMC surfaces.

Minimal surfaces. Minimal surfaces, having zero mean curva-
ture at every point, are a special case of CMC surfaces. There is
considerable amount of research on minimal surfaces. Computa-
tion of minimal surfaces with a given boundary of disk topology
normally works by minimizing the surface area while maintaining
the boundary condition. Naturally, methods for modeling CMC sur-

faces can also be used to model minimal surfaces. Other approaches
to computing minimal surfaces include minimization of mesh area
using mean curvature flow in the form of geometric PDEs by Xu
et al. [2006], and minimization of the Dirichlet energy by Pinkall
and Polthier [1993]. Our method is also capable of generating dis-
crete minimal surfaces of better mesh quality than by other existing
methods.

CVT. We now give a brief review on centroidal Voronoi tessella-
tions (CVTs). A thorough survey on CVTs can be found in [Du
et al. 1999] and [Du et al. 2010]. Given a set X = {x1, . . . , xk}
of k seed points in a compact domain Ω ⊂ Ed, the Voronoi cell
Vi associated with a seed point xi is the set of points in Ω which
are closer to xi than any other seed points, that is, Vi = {y ∈ Ω |
‖y − xi‖ ≤ ‖y − xj‖, ∀j 6= i, j = 1, . . . , k}. The collection of
all Voronoi cells {Vi}ki=1 forms a partition of Ω for which we call
a Voronoi tessellation. A CVT is a special kind of Voronoi tessel-
lation in which every seed point coincides with the centroid of its
corresponding Voronoi cell.

Equivalently, a CVT is characterized by a critical point of the CVT
energy function [Du et al. 1999]:

FCVT(X) =

k∑
i=1

∫
y∈Vi

ρ(y) ‖y − xi‖2 dσ, (1)

where ρ(·) is a density function defined over Ω and dσ is the dif-
ferential volume element of Ω. Therefore, a CVT can be obtained
by computing a local minimizer of FCVT(X). Liu et al. [2009]
show that, under some assumptions about the domain Ω and the
density function ρ, the CVT function FCVT(X) in Eq. (1) is C2.
Hence, they propose to compute CVTs using L-BFGS, a quasi-
Newton method, which is much faster than the conventional Lloyd’s
method [Du et al. 1999].

When the domain Ω is a surface embedded in 3D space E3, a
Voronoi cell Vi is the intersection of Ω with all the half spaces deter-
mined by the bisectors of the seed point xi and the other seed points.
Such a tessellation of the surface is called a restricted Voronoi di-
agram (RVD) [Du et al. 2003], and its dual is called a restricted
Delaunay tessellation (RDT). Yan et al. [2009] propose a method
for fast computation of RVDs and CVTs on meshes for the purpose
of surface remeshing.

As CVTs tend to generate uniformly distributed points, they have
found many applications in geometric processing and computer
graphics. However, to the best of our knowledge, although CVTs
restricted to surfaces have been discussed in [Du et al. 2003], they
have not been applied previously to surface modeling. We will
show how the CVTs can be used for modeling discrete CMC sur-
faces.

3 New Variational Formulation of CMC Sur-
faces

3.1 Existing formulation

Since a CMC surface S is a minimizer of surface area subject to a
volume constraint, a general approach to computing a CMC surface
satisfying some boundary conditions is to minimize the functional
Area(S) + λ × Vol(S), where Area(S) is the surface area of S,
Vol(S) is its enclosed volume1, λ is some parameter controlling the
shape of the surface. Let S0 be a surface that is a minimizer of this

1From a local point of view, the formula refers to the area of a small
neighborhood N around a point and the volume enclosed by the cone de-
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functional. Then, by the Lagrange principle for constrained mini-
mization, S0 has the minimum area among all the surfaces having
the same volume of S0. Hence, S0 is a CMC surface.

When the surface S is a mesh surface, the above functional takes
the form

F̃ (P) = F̃Area(P) + λF̃Vol(P), (2)

whereP is the vertex set of the mesh with some fixed mesh connec-
tivity, F̃Area(P) the mesh area, and F̃Vol(P) the volume enclosed
by the mesh. A minimizer of this function is then a discrete CMC
surface. This is the approach followed by Brakke [1992] and Polth-
ier and Rossman [2002], for example. This approach can be used
for interactive modeling of CMC by varying the value of λ, which
is equivalent to specifying the mean curvature. A major problem
with the functional F̃ (P) in Eq. (2) is that it does not take into ac-
count the optimization of mesh connectivity and therefore fails to
reflect mesh quality.

3.2 CVT energy vs. surface area

In view of the need to improve mesh quality, we note the capability
of the CVT (centroidal Voronoi tessellation) in uniformly distribut-
ing mesh vertices and optimizing mesh connectivity using Delau-
nay triangulation. The main idea behind our method is to replace
the surface area term in the preceding formulation of CMC surfaces
by the CVT energy term. Therefore, the key now is to demonstrate
that, when minimizing the CVT energy on a variable mesh surface,
the surface area is minimized. To this end, we will now prove that
the CVT energy of a CVT on a mesh surface Ω in E3 is asymptoti-
cally proportional to the squared area of Ω.

Let Ω be a surface patch of finite area |Ω| in E3, with constant
density ρ = 1. Given a set of seed points X = {xi}Ni=1 ⊂ Ω, the
CVT energy of Ω with respect to X is

E =

N∑
i=1

∫
Vi

‖x− xi‖2 dσ =

N∑
i=1

Ei, (3)

where N is the number of seed points, ‖ · ‖ the Euclidean distance
in E3, and Ei the energy of the Voronoi cell of xi.

Consider a CVT of the surface Ω, which is a minimizer of the
functional in Eq. (3). According to Gersho’s conjecture [Ger-
sho 1979] (proved by Gruber [2001] for Riemannian 2-manifolds),
when N → ∞, the following two properties hold for a CVT
asymptotically:

G1. Energy equipartition: Ei = E
N
.

G2. Cell congruency: All the Voronoi cells are congruent to the
same regular hexagon.

Now we are going to derive the relation between the CVT energyE
and the surface area |Ω|. Let h denote the edge length of the limit
Voronoi cells, which are congruent regular hexagons. On one hand,
since Ei is an integral of square distance times the area element
over the Voronoi regions, we have

Ei =

∫
Vi

‖x− xi‖2 dσ = τh4 +O(h5),

where τ = 5
√
3

8
. By property G1, it follows that

E = τNh4 +N ×O(h5). (4)

fined by a fixed arbitrary point in E3 and the boundary of N [Polthier and
Rossman 2002].

On the other hand, by property G2, there is

|Vi| = τ ′h2 +O(h3),

where τ ′ = 3
√

3
2

. Since
∑N

i=1 |Vi| = |Ω|, we obtain

|Ω| = τ ′Nh2 +N ×O(h3). (5)

Combining Eqs. (4) and (5) yields

E =
τ

τ ′2
× |Ω|

2

N
+N ×O(h5), (6)

From Eq. (5), we have h = |Ω|1/2 × O(N−1/2). It follows that
N × O(h5) = |Ω|5/2 × O(N−3/2). Therefore, from Eq. (6) we
have

E =
τ

τ ′2
× |Ω|

2

N
+ |Ω|5/2 ×O(N−3/2), or

N × E =
τ

τ ′2
|Ω|2 + |Ω|5/2 ×O(N−1/2). (7)

Hence, we conclude that the scaled CVT energy for a CVT, i.e.,
N × E, is asymptotically proportional to the squared surface area
|Ω|2 as the number of seed points N goes to infinity.

3.3 Extended CVT energy

LetM(X) be a 2D manifold mesh with N vertices X = {xi}Ni=1

in E3. Given an initial meshM(X), we define the extended CVT
(ECVT) energy function (under the usual L2 norm ‖ · ‖) as

FECVT(X) = N ×

(
N∑
i=1

∫
y∈Vi⊂M(X)

‖y − xi‖2 dσ

)
, (8)

where Vi is the restricted Voronoi cell of the vertex xi to M(X)
(cf. Section 2). In view of Eq. (7), we have introduced the number
of vertices N in front of the CVT energy as a normalization factor
to make the ECVT energy FECVT(X) independent of the number
of vertices (or seed points). Here, the mesh vertices ofM(X) are
at the same time the seed points for defining a Voronoi tessella-
tion. As a consequence, the domain mesh M(X) for the ECVT
energy FECVT(X) in Eq. (8) is defined by the variable seed points
X , therefore it changes when the seed points X are updated by
optimization. This situation is different from the definition of the
ordinary CVT energy in Eq. (1) for which the domain is fixed.

By the argument in Section 3.2, for a CVT X0, its ECVT energy
FECVT(X0) in Eq. (8) is proportional to the squared surface area
of the meshM(X0). Therefore, the minimization of FECVT(X)
implies the minimization of surface area. Furthermore, like the or-
dinary CVT energy, minimizing the ECVT energy ofM(X) makes
the mesh vertices uniformly distributed with optimized edge con-
nectivity. Hence, the ECVT energy FECVT(X) can be used to de-
velop a method for generating minimal surfaces with high mesh
quality. In the following, we will further extend the application of
the ECVT energy to modeling CMC surfaces.

3.4 CVT-CMC energy

Given a mesh surface M(X) in E3 with mesh vertices X =
{xi}Ni=1, the CVT-CMC energy ofM(X) is defined by

FCMC(X) = FECVT(X) + t× FVol(X) (9)

= N ×

(
N∑
i=1

∫
y∈Vi

‖y − xi‖2 dσ

)
+ t×

(
N∑
i=1

∫
y∈Vi

ny · xi dσ

)
,
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where ny is the unit normal at a point y of a facet and t ∈ R is a
parameter.

With a fixed parameter t, a fixed number of seed points N and a
given boundary, we are going to show that minimizing FCMC(X)
in Eq. (9) yields asymptotically a discrete CMC surface, using an
interpretation similar to that for the CMC formulation in Eq. (2).
LetM(X0) denote a mesh that is a minimizer of FCMC(X). Then
M(X0) has the smallest CVT energy among all the meshesM(X)
having the same volume as enclosed byM(X0). Therefore,X0 in-
duces a CVT partition on the meshM(X0). Then, according to the
proof in Section 3.2, since FECVT(X0) is asymptotically propor-
tional to the squared surface area ofM(X0),M(X0) has asymp-
totically the smallest squared surface area among all the meshes
M(X) having the same volume as enclosed by M(X0). Hence,
M(X0) is asymptotically a discrete CMC surface.

For the volume functional FVol(X) in Eq. (9), we use the following
formula for a closed mesh surfaceM,

FVol(X) =

N∑
i=1

∫
y∈Vi

ny · xi dσ = 3×Vol(X),

where Vol(X) is the signed volume bounded by the surface. When
M is an open mesh surface with a boundary ∂M, this formula
gives the volume of the closed region bounded byM and the cone
surface defined by connecting the origin to the points on ∂M. The
fact that this value is not invariant under translation does not affect
the minimization of the functional to yield a discrete CMC surface,
as can be seen later in Eq. (11) that its gradient is invariant to trans-
lation.

Gradient formula. In order to minimize the CVT-CMC energy
FCMC(X) using the L-BFGS method (cf. Section 4), we need to
find its gradient formula. Keeping in mind that the domainM(X)
changes with the seed points xi, by straightforward derivation, we
first find the gradient of FECVT to be

∂FECVT

∂xi
= N ×

(
2mi(xi − ci) (10)

+
1

24

∑
j

(‖xi − vj1‖3nj1 + ‖xi − vj2‖3nj2)
)
,

where mi and ci are the mass (i.e., area)
and the centroid of the Voronoi cell of the
vertex xi, respectively, j is an index of a
triangle face Tj in the 1-ring neighbor-
hood of xi, vj1 and vj2 are the other two
vertices of Tj , and nj1 and nj2 are the
unit normal vectors of the edges xivj1
and xivj2 in the plane of Tj (see the in-
set on the right in which the Voronoi cell
of xi is colored). The gradient formula in Eq. (10) is derived by fol-
lowing the idea of the CVT gradient derivation in [Du et al. 1999].
Specifically, we take FECVT(X) in the form FECVT(X;M(X)),
meaning that the function depends on the seeds X directly as well
as the domainM(X), whileM(X) in turn also depends onX . We
then differentiate it with respect to X and the compound variable
M(X). The differentiation with respect to X yields the standard
CVT gradient (i.e., the first term in Eq. (10)), and the differentiation
with respect toM(X) results in the second term.

The gradient of the CVT-CMC energy is then

∂FCMC

∂xi
=
∂FECVT

∂xi
+
∂FVol

∂xi
=
∂FECVT

∂xi
+t
∑
j

Sjnj , (11)

where Sj and nj are the area and the unit normal vector of the j-th
triangle face in the 1-ring neighborhood of the vertex xi, respec-
tively.

3.5 Shape control

Interpretation of parameter t. The parameter t in the CVT-CMC
energy function in Eq. (9) is important for controlling the shape of
a CMC surface. Since there is Eq. (6) for the relationship between
the CVT energy and the domain area, for a minimizer of the CVT-
CMC energy functional, we have 2σA∇A = −t∇Vol, where A
is the mesh area, Vol is the signed volume bounded by the mesh
and σ = τ/τ ′2 is the same constant coefficient as in Eq. (6). It
is known that when ∇A = −λ∇Vol, −λ is the mean curvature
H [Polthier and Rossman 2002], and is also the gas pressure if the
surface is regarded as a soap bubble that assumes a CMC shape nat-
urally [Brakke 1992]. So, as a physical interpretation, t = 2σλA
is the total force exerted on the mesh surface. It is more convenient
and robust to control the shape using the parameter t than using the
mean curvature, as we will see next.

Shape control using parameter t. During an interactive form
finding process, it is important that one is able to explore easily
the entire series of CMC surfaces having the same boundary con-
straints. Consider the process of inflating a spherical cap with the
same ring boundary, as shown in Fig. 2(a). Fig. 2(b) shows that the
mean curvature of the caps is not monotonic against the increas-
ing volume, and a single mean curvature value may correspond
to two distinct CMC surfaces. This lack of one-to-one correspon-
dence indeed causes difficulties for some methods, such as Surface
Evolver [Brakke 1992; Brakke 2012], which use λ (i.e., mean cur-
vature) as a shape control parameter. In fact, by simply manipulat-
ing the mean curvature in this example, it is not possible for Surface
Evolver to start from the flat spherical cap on the left of Fig. 2(a)
and generate those surfaces on the right beyond the semi-sphere (for
which the maximum mean curvature is attained).

In contrast, our method provides an intuitive and robust tool for in-
teractive shape exploration of CMC surfaces by using t as the shape
control parameter. For example, our method easily produces the en-
tire sequence of CMC surfaces in Fig. 2(a) by simply increasing t
monotonically, as shown in Fig. 2(c). Figs. 1 and 15 give several
examples of generating a sequence of discrete CMC surfaces by
varying the control parameter t using our method.

It is also worth noting that in order to obtain a control parame-
ter that is linear to mean curvature, one may instead use the func-
tional

√
FECVT(X) + t × FVol(X), since according to Eq. (7),√

FECVT(X) is proportional to surface area asymptotically. Un-
der this slightly modified energy functional, the parameter t is then
proportional to mean curvature.

4 Discrete CMC Surface Modeling

We compute a discrete CMC surface as a minimizer of the CVT-
CMC energy via an optimization framework. Starting from an ini-
tial mesh complying with some given boundary conditions, at each
iteration, we minimize the CVT-CMC energy to yield new vertex
positions. A new mesh is then obtained by updating mesh connec-
tivity. The iterations proceed until convergence.

Optimization. We apply the L-BFGS method [Liu and Nocedal
1989] to minimize the CVT-CMC energy FCMC(X) in Eq. (9). It
is an efficient implementation of a quasi-Newton method with rea-
sonable space consumption, and has demonstrated superior conver-
gence than gradient descent in the setting of minimizing the C2
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(a)

(b) (c)

Figure 2: (a) A sequence of CMC surfaces with increasing volume
and the same ring boundary. The middle CMC surface has the max-
imum mean curvature. (b) The mean curvature of the sequence is
not monotonic and therefore methods relying on direct manipulat-
ing the mean curvature for shape control, such as Surface Evolver,
will have difficulty to go beyond the middle cap to the right one. (c)
Our method can generate the entire sequence easily by increasing
t monotonically.

CVT energy [Liu et al. 2009]. Although the global smoothness of
the CVT-CMC energy has not been established, we observe that the
L-BFGS method is much faster than the gradient descent method
in minimizing the CVT-CMC energy. As a quasi-Newton method,
the L-BFGS method requires only evaluation of the energy function
and its gradient (Eq. (11)).

Mesh update. The computation of the ECVT energy in Eq. (8)
requires the restricted Voronoi diagram (RVD) of a mesh. Our spe-
cial setting of having mesh vertices as the seed points admits a more
efficient RVD implementation than the general RVD computation
involving 3D Delaunay construction and polygon clipping by Yan
et al. [2009]. Here, whenever a new set of vertex positions are
obtained, we perform extrinsic edge flipping to update the combi-
natorics of the mesh until the local Delaunay condition that “every
pair of opposite angles of two adjacent triangles sum up to no more
than π” is met. This is similar to the Delaunay mesh condition
by Dyer et al. [2007], which also implies that all facet angles are
acute for reasonably good vertex distribution. In this way, we may
consider a Voronoi cell to involve only the 1-ring neighbor facets
of a vertex, with its boundary connecting facet circumcenters and
edge mid-points, and therefore have closed form expression to be
computed very efficiently.

The edge flipping procedure may encounter unflippable edges
which if flipped, will coincide with some existing edges in the
mesh. Unflippable edges are regarded in [Dyer et al. 2007] as a
sign of insufficient sampling rate, and refinement is needed to in-
crease the number of samples. In our algorithm, however, unflip-
pable edges are treated as the existence of singularities due to ex-
treme curvature change which may occur naturally in the evolution
process of a CMC surface computation. There are only two possi-
ble cases of unflippable edges, namely 2-exposed and 3-exposed, as
identified in [Dyer et al. 2007]. The number n in n-exposed stands
for the number of facets of the flip tetrahedron (i.e., one that is de-
fined by the unflippable edge and its opposite edge) that are mesh
triangles. Fig. (3) depicts how we handle the two cases as case (i)

(i)

(ii)

flip

flip

contract 
& split

remove
  facet

Figure 3: The handling of two possible cases of unflippable edges.
The unflippable edges (in red) are flipped to their opposite ones (in
white) as usual. In case (i), the nonmanifold edge is contracted
and the mesh is split into two components; in case (ii), a nonmani-
fold facet is removed. After the procedure, the mesh remains a 2D
manifold.

and case (ii), respectively. Our algorithm flips the unflippable edges
to their opposite edges as usual in the edge flipping procedure, thus
creating nonmanifold edges. We then apply mesh surgery to re-
move the nonmanifold situations accordingly. It is possible that the
aforementioned local Delaunay condition is slightly violated at the
modified edges, which, however, does not affect the overall opti-
mization. It is also observed that due to extreme curvature at sin-
gularity, triangles have to be slim around a nonmanifold edge, and
hence the 2-exposed case can be treated as a 3-exposed case (see the
upper portion, in dashed box, of the middle configuration in case (i)
of Fig. (3)). Handling this pseudo 3-exposed case will also result
in splitting the mesh into two components, just as what one should
obtain in case (i). Therefore, we may even skip the “contract &
split” step for the 2-exposed cases in our implementation.

Use of the parameter t. Given a boundary and an initial mesh
that is not necessarily a CMC surface, we estimate an initial value
t0 of the parameter t by computing the ratio of the gradients of the
ECVT energy to the volume functional on the initial mesh. This is
done by summing up

ti = −
〈∂FECVT

∂xi
,
∂FVol

∂xi

〉/∥∥∥∂FVol

∂xi

∥∥∥2
where 〈 , 〉 is the inner product, over all the vertices xi. Then the
initial mesh will be optimized into a CMC surface dictated by t0,
which is to be used as a reference surface. After that, the user may
adjust the value of t to explore a range of CMC surfaces having the
same boundary but of different shapes.

5 Results

5.1 Validation and comparisons

We use examples of both minimal surfaces and CMC surfaces to
demonstrate the validity and effectiveness of our method in terms
of approximation quality and mesh quality. In each example, we use
an initial mesh having a topology similar to the final mesh and at
the same time complying with the given boundary curves. We start
by evaluating our results using two well-known CMC surfaces, the
catenoid and the unduloid.
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Approximation to analytical surfaces. The catenoid is one of
the earliest found minimal surfaces and is the soap film developed
between two coaxial circular rings when moving them apart slowly
[Osserman 2002]. We compare the approximation of the catenoid
surface computed by our method with mean curvature flow (MC
flow) using the cotangent formula by Pinkall and Polthier [1993]
(Fig. 4). Our method produces a discrete minimal surface with
smaller area than MC flow, even though MC flow directly mini-
mizes mesh area. This testifies the importance of mesh quality on
minimizing mesh area. Our result is also a close approximation to
the analytical catenoid (a maximum vertex distance of 0.013 to the
catenoid given that the minimum radius of its neck is 1). It is also
possible to have the CVT-CMC optimization followed by an MC
flow to further reduce mesh area; for example, by taking our result-
ing catenoid as input, MC flow produces a slight reduction to the
mesh area by 0.02% (Fig. 4(d)).

(a) Input mesh

No. of vertices = 720

A d
(b) 17.668 0.013
(c) 17.701 0.006
(d) 17.664 0.006

A: mesh area, d: max. vertex dis-
tance to analytic catenoid surface

(b) Our method (c) MC flow (d) MC flow taking (b)
as input

Figure 4: Discrete catenoid surfaces. The neck has a minimum ra-
dius equal to 1. The table gives the area of the resulting meshes
and the maximum distance of vertices to the analytic catenoid sur-
face. Our method produces a high quality mesh with smaller area
than using mean curvature flow (MC flow). By taking our result as
an initial mesh, MC flow (which directly minimizes mesh area) only
improves the mesh area slightly by 0.02%.

An unduloid is a CMC surface which is a surface of revolution
generated by the path of a focus of an ellipse rolling on the axis
of revolution and looks like blobs of viscous liquid [Hadzhilazova
et al. 2007]. We compute a discrete unduloid surface with a specific
volume and determine its area and its maximum distance to the cor-
responding analytical unduloid surface (Fig. 5). We compare our
result against that of Surface Evolver [Brakke 1992], a program that
generates CMC surfaces by minimizing mesh area with a volume
constraint. The output mesh generated by our method is used as
an input to Surface Evolver, as Surface Evolver does not optimize
mesh connectivity and its performance depends therefore on the in-
put mesh quality. In this example, Surface Evolver only slightly
reduced the area by 0.02%.

Remark: In practice we work with meshes of a limited number of
vertices to approximate CMC surfaces, and the least number of ver-
tices with which we may get a good approximation also depends on
the specific shape of a surface. Generally speaking, as the number

(a) Input mesh (b) Our method
A = 60.498, d = 0.032

(c) Surface Evolver
A = 60.489, d = 0.034

(d) Surface Evolver taking (b) as input
A = 60.485, d = 0.030

Figure 5: Discrete unduloid surfaces. A: Mesh area; d: maximum
vertex distance to the analytical unduloid surface. Surface Evolver
only improves the mesh area of our result slightly by 0.02%.

of vertices increases, we get better approximations. However, it is
nontrivial to examine asymptotic behaviors merely using numerical
experiments, as there is always the difficulty of finding the global
minimum of the energy functional.

Mesh quality comparisons. Fig. 6 shows another example of
a minimal surface with a saddle-shaped boundary, with an initial
mesh containing a sharp edge. Pinkall and Polthier’s method [1993]
distorts the mesh severely due to its lack of ability to re-establish
vertex connectivity. We also compare against Bobenko [2007], a
Delaunay augmented version of Pinkall and Polthier’s method that
allows mesh connectivity change. Both Bobenko’s and our methods
can handle the abrupt change towards the resulting surface which
has a very different shape from the input. However, our method
produces a result of the best mesh quality with the smallest area
among all the results.

Comparisons with Surface Evolver. Fig. 7 shows two discrete
CMC surfaces with the same volume and boundary curve computed
by our method and Surface Evolver. Our method results in a high
quality discrete CMC mesh with an area close to that of Surface
Evolver. Taking our resulting discrete CMC surface as the initial
mesh, Surface Evolver can further reduce the mesh area by 0.2%
when the number of vertices (N ) is 100, and this reduction de-
creases linearly as N increases (Fig. 7(c)). This indicates that our
method performs as good as minimizing mesh area directly, while
offering superior mesh quality.

We also compute the discrete mean curvature values by the cotan-
gent mean curvature normal method [Meyer et al. 2003]. It is
noted that an ordinary optimization routine in general yields a local
minimum only (since the CVT-CMC energy is highly nonconvex).
By using a simulated annealing technique [Pardalos and Romeijn
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(a) Input mesh (b) Our method (A = 4.484)

(c) Pinkall-Polthier (A = 4.598) (d) Bobenko (A = 4.486)

Figure 6: Computing a discrete minimal surface with a saddle-
shaped boundary. Our method yields the minimum mesh area and
the best mesh quality.

2002] for global optimization, we obtain an approximation to the
global minimizer of the CVT-CMC energy. Fig. 7(d) shows that the
mean curvature distribution of our result by global optimization is
comparable to that of Surface Evolver. We also note that the vari-
ations of the mean curvature value of our result appear mostly at
vertices that are close to the boundary or at irregular vertices whose
valence is not six (Fig. 7(a)). This phenomenon can be accounted
for by the fact that the asymptotic equipartition property of CVT
(G1) does not generally hold at the boundary; also, we observe that
on our resulting mesh, which consists mostly of regular triangles,
the discrete operator for approximating mean curvature is more ac-
curate at vertices of valence six than at other vertices.

Fig. 8 shows a comparison of our method with Surface Evolver
on generating several discrete CMC surfaces in terms of mesh
quality and robustness. It can be seen that the resulting mesh by
Surface Evolver contains many slim and long triangles, while our
method yields much better results in terms of mesh quality. Surface
Evolver supports remeshing interlaced with optimization by means
of the operations “Equiangulation” for mesh combinatoric update
and “Vertex Averaging” for Laplace smoothing on the mesh. With
remeshing, Surface Evolver generates meshes with better quality
and a smoother shape (Model I of Fig. 8). However, the Laplace
smoothing in the interlaced optimization does not reduce the energy
used by Surface Evolver which renders the process non-converging.
Indeed, in some cases, vertices are found to oscillate between being
smoothed or reducing surface energy. Model II is a typical scenario
in which the interlaced iterations do not converge and the mesh ex-
pands infinitely. Fig. 8(**) is an intermediate mesh that will even-
tually blast, so the final result for Surface Evolver in this case is
not available. Our method, combining area minimization as well
as remeshing in the CVT-CMC energy, ensures a robust modeling
process that produces high quality CMC meshes.

Comparison with PDE based method. We also compare our
method with the PDE based approach by Xu and Zhang [2008],
where geometric differential equations are solved with a finite dif-
ference scheme using quadratic fitting for each element. The re-

(a) (b)

N CC SE Ar(%)

100 4.2009 4.2010 0.210
400 4.1726 4.1727 0.061
1600 4.1635 4.1637 0.014
6400 4.1612 4.1613 0.003

  
  

 

  

(c) (d)

Figure 7: Discrete CMC surfaces with same volume and boundary
curve generated by (a) our method; and (b) Surface Evolver, and
color coded with discrete mean curvatures by the cotangent for-
mula. (c) Mesh area versus number of vertices (N ) by our method
(CC), Surface Evolver (SE) and the area reduction (Ar) in % by
Surface Evolver taking our result as input. (d) The mean curvature
distribution of the resulting mesh by our method (CVT-CMC), Sur-
face Evolver (SE), and Surface Evolver taking our result as input
(CC-SE).

sults are shown in Fig. 9. It can be observed that the PDE based
approach is sensitive to the input triangulation, whose quality, if
not good enough, will cause the resulting surface to have not only
slim triangles but also a larger mean curvature deviation (Fig. 9(c)).
Remeshing such a result improves the mesh quality; at the same
time, however, it worsens the mean curvature measure as is shown
in (d).

5.2 Robustness upon topological change

When the two rings of a catenoid soap film are moved further
apart, the neck of the catenoid will gradually become narrower un-
til when the ring separation/radius ratio reaches the critical value
1.33, upon which the neck breaks up and the catenoid splits into
two disks. Fig. 10 depicts how this phenomenon can be captured
by our method by simulating the evolution of the catenoid into two
disks. This sequence of catenoid surfaces is generated by stretching
the current catenoid with rings moved further apart, and then using
the stretched mesh as an input to produce the next catenoid.

Throughout the simulation of the evolution of the catenoid soap
film, there is a transition in which the 1-sheet input mesh results in
an output with two disks. The splitting of an input mesh is shown in
Fig. 11 in which we take two coaxial rings whose separation/radius
ratio is larger than the critical value 1.33 as the boundary for con-
structing a minimal surface. The minimal surface is therefore ex-
pected to be of two disks, each bounded by one of the rings. Our
method can drive the evolution of the cylinder and split it into two
pieces naturally, via the edge flipping operation described in Sec-
tion 4.

The split of a catenoid can also be dealt with by Chopp [1993];
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Input mesh Our method Surface Evolver Surface Evolver*

I

II

(**)

Figure 8: Comparison with Surface Evolver for two CMC surfaces. Surface Evolver* is the result of Surface Evolver with remeshing by
the “Equiangulation” and “Vertex Averaging” operations. Our method has a robust modeling process that yields higher mesh quality than
Surface Evolver. The remeshing operations of Surface Evolver can help improve its resulting mesh quality as shown in Model I; however, in
some cases, Surface Evolver with remeshing does not converge as is shown in (**) of Model II which is an intermediate result only.

(a) Input mesh (b) Our method

(c) Xu and Zhang 2008 (d) Remesh of (c)

Figure 9: Comparison with Xu and Zhang [2008], a PDE based
approach, with resulting meshes color-coded according to mean
curvature. (b) Our method generates a discrete CMC surface with
a superior mesh quality over the PDE method. (c) The blue part at
the bottom of the PDE result indicates a defective region where the
mean curvature is comparatively lower. (d) A remesh of the PDE
result improves the mesh quality but worsens the mean curvature
measure.

Figure 10: The evolution of a catenoid into two disks simulated
using our method.

Figure 11: The process of splitting a 1-sheet input mesh into an
output of two disks. Intermediate meshes in our optimization are
shown from top-left (the initial mesh) to bottom-right (the final re-
sult). Our method can naturally handle topological change of the
mesh during the optimization process.

however, the method is level set-based and therefore does not work
for those minimal surfaces without a level set representation, such
as the Möbius band. A Möbius band soap film developed between
a double loop boundary curve can turn into a two-sided minimal
surface solution when the loop is gradually pulled apart and un-
twisted [Goldstein et al. 2010]. This interesting process can be
simulated robustly with our method, as is shown in Figure 12.

5.3 Boundary handling

There are different types of boundaries or geometric constraints for
CMC surfaces encountered in applications. These include fixed
boundaries, free boundaries constrained on a fixed surface, free
boundary curve segments with fixed length, and nonmanifold edges
shared by more than two surface sheets. In the following, we will
discuss how these different cases can be treated in our modeling
framework.

Fixed boundary. A fixed boundary of a CMC surface does not
move when the surface evolves to adopt different mean curvature
values. Given a fixed boundary curve, the user may define an initial
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Figure 12: A one-sided Möbius surface evolves to two-sided min-
imal surface by gradually pulling apart and untwisting the double
loop boundary curve.

simple shape interpolating the boundary, and then apply the opti-
mization scheme to compute a CMC surface. Note that sufficiently
many mesh vertices are necessary for well approximating a smooth
surface. The number of mesh vertices can be added or removed pro-
gressively to balance computational efficiency and approximation
accuracy. Fig. 13 shows some minimal surfaces with fixed bound-
aries and Fig. 14 shows examples of discrete CMC surfaces repre-
senting CAD models, which are created with our method. More ex-
amples of CMC surfaces with fixed boundary generated by a vary-
ing control parameter t are shown in Fig. 15.

Boundary mesh vertices are determined via relaxation and re-
projection as follows. All the boundary vertices are first relaxed to
become interior vertices and therefore will undergo the CVT-CMC
optimization. After optimization, those interior vertices whose
Voronoi cells intersect the boundary curve will be re-projected onto
the boundary curve. Such a relaxation plus re-projection step is also
applied if the number of boundary vertices does not match well with
the number of interior vertices during the evolution of a CMC sur-
face, either when there is a radical change of the surface area or
when there are many mesh vertices being added or removed [Yan
et al. 2010].

Free boundary. We consider two types of free boundaries. The
first type are those boundary curves having two fixed endpoints and
a fixed length, but are free to vary in 3D; flexible cable lines of ten-
sile membranes are such examples. A tensile membrane structures
with this type of free boundary modeled with our method is shown
in Fig. 16. The other type refers to a boundary curve of a CMC
surface that is constrained to lie on a given surface, as in the case of
soap bubbles attached to a table surface. The cluster of bubbles on a
flat surface shown in Figure 17(a) is an example of a CMC surface
with free boundaries modeled using our method. Note that a CMC
surface may have fixed boundaries and free boundaries at the same
time. The treatment of free boundaries is similar to fixed bound-
aries, except that now the boundary mesh vertices are allowed to
move when the shape of the CMC surface changes, subject to their
specific constraints.

Nonmanifold boundary. A nonmanifold boundary is a feature
curve incident to three or more CMC surface sheets, as in the case
of the soap bubbles shown in Fig. 17. When three sheets share a
curve, which is called a Plateau border, they form three pairwise
angles of 120 degrees along the curve [Taylor 1976]. Our inves-
tigation shows that for mesh vertices on a nonmanifold boundary,
locally minimizing the surface area of the strip of triangles incident
to the boundary vertices produces smoother boundary curve than
using the CVT-CMC energy function; this is probably due to the
reason that the ECVT energy needs a larger region to distribute the
vertices evenly. Therefore, we adopt the strategy of alternatingly
optimizing the CVT-CMC energy of the interior vertices while fix-
ing the boundary vertices, and minimizing the surface area of the

(a) Circular helical (b) Fivenoid (c) Two rings

Figure 13: Some minimal surfaces with different boundaries gen-
erated by our method. The two minimal surfaces in (c) are of the
same boundary but have different topologies.

(a) Mouse (b) Turbine compressor

Figure 14: CAD models in mesh. The blue cover in (a) and the
brown neck in (b) are CMC surfaces computed by our method, given
the boundaries fixed as input. Original shapes from AIM@Shape.

strip of triangles incident to the free boundary vertices while fixing
the interior vertices. Fig. 17 shows our results of computing soap
bubbles with free and nonmanifold boundaries.

6 Conclusion

We presented a new method for discrete CMC surface modeling
which takes into account mesh quality while minimizing surface
area with a volume constraint. We proposed the extended centroidal
Voronoi tessellation (ECVT) energy and showed that the energy
can govern the minimization of surface area when the domain is
allowed to vary. By optimizing a new CVT-CMC energy which
combines the ECVT energy and the volume functional, one can
generate a discrete CMC surface with high mesh quality in a uni-
fied formulation. Our method also provides a robust shape-control
parameter that supports interactive shape exploration.

A limitation of our current method is that it assumes a constant
distribution of vertices over the mesh, which means that the num-
ber of vertices in a certain part of the mesh does not depend on

Figure 16: A tensile membrane structure with cables and fixed
boundaries.
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Figure 15: More examples of a sequence of CMC surfaces of the same boundary generated by varying the control parameter t using our
method. The surfaces for which t = 0 are the minimal surfaces.

(a) (b)

Figure 17: Examples of bubbles with free and nonmanifold bound-
ary conditions.

the local geometric properties, e.g., surface curvature. For surfaces
with many features, a large number of vertices will be needed for
smooth modeling of regions of high curvatures. Future research is
therefore needed to incorporate adaptive vertex distribution to fur-
ther improve the mesh quality.
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YAN, D., LÉVY, B., LIU, Y., SUN, F., AND WANG, W. 2009.
Isotropic remeshing with fast and exact computation of restricted
Voronoi diagram. In Computer graphics forum, vol. 28, Wiley
Online Library, 1445–1454.
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