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A B S T R A C T

Triply periodic minimal surface (TPMS)-based shell lattices are increasingly recognized for their exceptional
geometric and mechanical attributes. Their open-cell configuration further establishes them as prime candidates
for additive manufacturing, especially using liquid-bath or powder-bed techniques. While TPMS can be
developed through both implicit and explicit methods, each has its limitations. Implicit methods, commonly
adopted, are constrained by a limited set of known functions and a singular level set parameter, narrowing
the modeling space. On the other hand, explicit methods, though they aim to minimize the surface area
functional, encounter challenges in generating surfaces of high genus due to the complexity in achieving
specific topologies. In this paper, we unveil a novel modeling approach for TPMS-like shell lattices. Central to
our approach is the creation of periodic boundaries that seamlessly integrate implicitly formed complex surface
patches. Our methodology introduces a parametric representation for these boundaries, leveraging a unique
search algorithm paired with spline curve parameterization. Following this, we implement a formulation of
geometric currents harmonized with boundary periodicity 𝐶1 continuity to determine the associated TPMS.
This innovation spawns a variety of parametric TPMS-like shell-lattice topologies. Using the homogenization
method, we assess the elastic attributes of these diverse families. Our findings reveal that the mechanical
property spectrum of our TPMS-like shell lattices surpasses that of conventional TPMS-based counterparts.
We spotlight two applications for our modeling technique: designing functionally graded materials and
implementing inverse homogenization. Concluding our study, we validate our innovations through a sequence
of empirical tests.
1. Introduction

With advances in manufacturing engineering, lightweight yet high-
strength sophisticated porous structures based on shell-lattices have
gained prominence, finding applications in numerous engineered sys-
tems [1,2]. Among shell-lattices, the triply periodic minimal surface
(TPMS)-based shell-lattices stand out as captivating microstructures.
Their appeal stems from their smoothness, complete connectivity, and
open-cell topology. A TPMS is a unique minimal surface that manifests
periodicity in three orthogonal directions, effectively dividing space
into two continuous, non-overlapping subspaces. Their exceptional ge-
ometric qualities play a pivotal role in their application efficacy. For
instance, TPMS-based shell-lattices consistently showcase remarkable
mechanical resilience at reduced relative densities [3]. They mitigate
stress concentration more effectively than truss-lattices [4] and offer
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manufacturing benefits over plate-lattices [5]. The versatility of TPMS
structures is further evidenced by their application in domains such as
heat exchangers [6,7], biomedical implants [8], tissue engineering scaf-
folds [9,10], lightweight frameworks [2], and acoustic absorbers [11].
They also hold potential in membrane technologies [12] and enhancing
electrical conductivities [13]. Intriguingly, nature too exhibits struc-
tures reminiscent of TPMS, underscoring their potential in biomimetic
designs [14,15].

The construction of TPMS-based shell-lattices has gained consid-
erable attention. TPMS can be generated using implicit methods or
explicit methods, which have different strengths in modeling flexibility.
In the implicit method, the TPMS can be described by a single-valued
function of three variables consisting of trigonometric functions. Take
three classical TPMS units (P, D, G) as examples, these surfaces can be
described approximately by the zero-level value of the following level
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Fig. 1. Overview of our TPMS shell lattice modeling framework. We first define the boundary curve for a 1/8 lattice cube, which consists of two steps: (a) topology enumeration
and (b) geometry variation. Given the boundary curve, (c) we use implicit method to compute for the adapted minimal surface with boundary continuity.
set equations, respectively:

𝜙𝑃 (𝑥, 𝑦, 𝑧) = 𝑐𝑜𝑠(𝑥) + 𝑐𝑜𝑠(𝑦) + 𝑐𝑜𝑠(𝑧) = 𝑐

𝜙𝐷(𝑥, 𝑦, 𝑧) = 𝑐𝑜𝑠(𝑥)𝑐𝑜𝑠(𝑦)𝑐𝑜𝑠(𝑧) − 𝑠𝑖𝑛(𝑥)𝑠𝑖𝑛(𝑦)𝑠𝑖𝑛(𝑧) = 𝑐

𝜙𝐺(𝑥, 𝑦, 𝑧) = 𝑠𝑖𝑛(𝑥)𝑐𝑜𝑠(𝑦) + 𝑠𝑖𝑛(𝑧)𝑐𝑜𝑠(𝑥) + 𝑠𝑖𝑛(𝑦)𝑐𝑜𝑠(𝑧) = 𝑐

(1)

The discrete mesh model of zero surface can conveniently be extracted
based on the well-known marching cube algorithm [16]. Due to the
efficiency of the implicit method, all the applications described above
preferred this form in the construction of TPMS-based shell-lattices.
However, implicit functions are known only for a few TPMS structures,
and the geometry of TPMS can have variations only by adjusting the
single parameter 𝑐, which limits the modeling ability for TPMS. In
explicit methods, an explicitly constructed surface patch is evolved
iteratively by minimizing surface area, subject to the boundary con-
straints that ensure the periodic compositionality of patches. Therefore,
the challenge with explicit methods lies in balancing the boundary
flexibility for triply periodic composition and the explicit surface patch
computation for given boundaries. Indeed, existing works mostly con-
struct TPMS patches bounded inside cells of crystallographic symme-
tries, where the periodicity is guaranteed and the individual patches
are simple enough to compute explicitly. For example, Schwarz and
Neovius explored the first 5 TPMS examples [17]. [18] found 12 new
TPMS derived from the Schwarz surfaces and have fundamental patches
bounded within kaleidoscopic cells of reflection symmetry. [19] studies
TPMS supported by crystalline lattices where the fundamental patches
are bounded by straight lines and naturally composed through 180◦

rotations along the boundary lines. [20] develops the conjugate surface
algorithm to convert between patches bounded by free boundaries or
straight lines and the method of handle insertion, which further en-
riches the TPMS class. While such procedures classify TPMS structures
under specified construction symmetries, the fundamental patches as-
sume fully specified simple topology, as explicit patches have difficulty
modeling changing or complex topology.

In this work, we propose a new framework for modeling TPMS
shell lattices with enhanced flexibility. Our approach combines the
advantages of both implicit methods and explicit methods, by explic-
itly specifying flexible periodic boundaries and implicitly computing
minimal surfaces adhering to the boundaries. Specifically, we build on
the technology of [21,22] that uses geometric measure theory to find
minimal surfaces of changing topologies implicitly, which allows us to
design complex boundary conditions in a much more flexible manner
than traditional explicit methods mentioned above.

Our framework consists of two major components (Fig. 1). The
first component addresses the main challenge of constructing periodic
boundaries. A key insight is to split a periodic unit cell into 1/8
2

cubes and construct boundaries there, which on one hand simplifies
the construction of boundary conditions and makes implicit minimal
surface patch computation robust, and on the other hand provides
sufficient complexity by combining 1/8 cubes into a unit cell. Given
the boundaries, the second component of our framework is to compute
smooth minimal surfaces fitting to the boundaries by extending the
implicit methods of [21,22]. In particular, smoothness at the boundary
is critical when we synthesize the resulting minimal surfaces, which we
ensure by extending the implicit method with smoothness constraints.

Utilizing our computational approach, we have identified new cat-
egories of TPMS-like shell lattices with varied structures. When juxta-
posed with existing TPMS shell-lattices, our findings indicate that our
shell-lattices can expand the material property spectrum (specifically,
Young’s modulus and Poisson’s ratio). Additionally, they enhance the
surface area-to-volume ratio and achieve isotropic stiffness. These at-
tributes present significant and novel alternatives for microstructure
material engineering. In terms of applications, our parametric boundary
model facilitates the establishment of a bidirectional mapping between
geometric parameters and mechanical properties using neural net-
works. Furthermore, by anchoring the outer boundary parameters, we
can design functionally graded structures that boast impeccable connec-
tivity. We substantiate these findings and their practical applications
with examples and data analysis.

2. Methods

Our methodology for modeling TPMS-based shell-lattices consists of
two main stages (Fig. 1). We first introduce the explicit construction
of periodic boundaries, which includes the choice of 1/8 cube for
boundary construction (Section 2.1), the search of boundary topology
that guarantees triple periodicity and boundary shape parameterization
(Section 2.2). Then we solve for corresponding TPMS implicitly, by an
adapted formulation of geometric currents with boundary 𝐶1 continuity
constraint to guarantee the smoothness and high mesh quality at the
boundary (Section 2.3).

2.1. 1/8 Cube cell

Among all crystallographic symmetries, cube decomposition pro-
vides a simple unit for constructing triply periodic surfaces, as given
a surface patch with suitable periodicity boundaries inside the cube, a
larger TPMS can be trivially constructed by tiling the basic patch along
three axes. However, in this work, we propose to work with the 1/8
unit cube instead, which achieves both computational robustness and

modeling flexibility.
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Fig. 2. Using 1/8 cube for robust and flexible TPMS generation. (a) On a unit
cube the minimal surface with six circular boundaries degenerates to disconnected
components. Minimal surfaces are local minima of surface area and are more likely
to degenerate under more complex boundary conditions that admit multiple solutions.
In contrast, (b) the minimal surface can be generated successfully on a 1/8 cube with
boundary condition trimmed from the unit cube. (c) the surface of (b) can then be
composed back onto the unit cube as a high-genus connected surface.

The boundaries on a unit cube can be a single closed curve or
multiple closed curves as long as they comply with triple-periodicity
constraints. By restricting to single closed boundaries, the boundary
topology variations are limited. In contrast, multiple closed boundaries
enable more flexible boundary topologies. However, they are also more
likely to result in the degeneracy of minimal surfaces (Fig. 2(a)), which
breaks the connectivity of structures. The reason for degeneracy is that
minimal surfaces are local optimal solutions of surface area minimiza-
tion. For larger patches with very complex boundaries, there can be
more local minimum, among which a numerical method is more likely
to miss the interesting ones and lock onto degenerate solutions. On the
other hand, by restricting to 1/8 cube cells, there are multiple benefits.
First, we can decrease the search space complexity by focusing on
simpler boundary curves, while the composition of 1/8 cells into a unit
cell still allows for very complex boundaries and topologies. Second,
within a simpler 1/8 cell, the minimal surface patch has fewer local
minima and can be more robustly constructed. As shown through the
example of Fig. 2(b)(c), by working with 1/8 cell, a properly connected
TPMS with the same boundary as Fig. 2(a) can be found.

2.2. Boundary construction

To fully explore the space of possible boundaries, we divide the task
into two subtasks: topology enumeration and geometric variation.

Boundary topology enumeration. Assuming that the boundary is free
from self-intersection, we can systematically explore the space of ad-
missible boundary topologies by representing them as graphs. In this
graph representation, each node corresponds to an intersection point
between the boundary curve and a cube edge, while each edge rep-
resents a simplified intersection between the boundary curve and a
cube face (refer to Fig. 5). As illustrated in Fig. 3, there are eight
possible connections for the edge nodes on each face. Consequently, the
total number of potential topologies that traverse all six faces amounts
to 86, subject to further constraints. The constraints are applied as
follows. First, since boundary curves are closed, the degree (i.e. the
number of adjacent edges) [23] of each node should be either 2 or 0,
which reduces the number of topologies dramatically to 256. Fig. 4(a)
illustrates a non-closed topology with nodes having a degree of 1.
Second, some topologies are equivalent under the cubic symmetries
of rotation and reflection. For example, Fig. 4(b)(c)(d) depict closed
topologies that are equivalent under cubic symmetry. After eliminating
these duplicates, there are a total of 20 unique topologies, all of which
are presented in Fig. 5. It can be found that only topo_1, topo_3
and topo_6 are triply periodic topologies.

To synthesize the 1/8 cell boundary topology to a unit-cell with
triple periodicity, we can use two symmetrical relationships along
an axis: translation and reflection. Different symmetries along each
axis impose different requirements on the admissible 1/8 topology.
3

Translation symmetry requires that the boundary on opposite faces are
congruent, while reflection symmetry has no constraints. For example,
the boundary topology of topo_19 synthesized by three reflections
and topo_1 synthesized by three translations are shown in Fig. 11(a)
and (b), respectively. It is worth noting that the boundary topology
shown in Fig. 11(a) consists of multiple closed boundaries, but it is
constructed from the single closed boundary topo_19.

For convenience of discussion, we denote the topology of a unit cell
as topo_id_x1x2x3, where id specifies the 1/8 topology listed in
Fig. 5, and x1x2x3, 𝚡 ∈ {𝚛, 𝚝} gives the synthesis symmetry (r for
reflection, t for translation) along three axes, respectively. In summary,
if we design the boundaries on the entire cube we can only get three
triply periodic topologies. But we can greatly increase the number
of triply periodic topologies by combining the 1/8 topology and the
synthetic way.

Boundary geometric variation. To construct concrete boundary curves
for each topology, we convert each edge in the topology graph into
cubic Hermite splines [24], which facilitates the generation of geomet-
ric variations. A cubic Hermite spline curve is fully determined by four
parameters [25]: the starting point of the curve (𝑝1), the direction in
which the curve leaves the starting point (𝑑1), the endpoint of the curve
(𝑝2), and the direction in which the curve leaves the endpoint (𝑑2).
Assuming a cubic polynomial function 𝑃 (𝑥) = 𝐶0+𝐶1𝑥+𝐶2𝑥2+𝐶3𝑥3, we
can compute the values of 𝐶0, 𝐶1, 𝐶2, and 𝐶3 by solving the following
equations:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑝1 = 𝑃 (0) = 𝐶0
𝑝2 = 𝑃 (1) = 𝐶0 + 𝐶1 + 𝐶2 + 𝐶3
𝑑1 = 𝑃 ′(0) = 𝐶1
𝑑2 = 𝑃 ′(1) = 𝐶1 + 2𝐶2 + 3𝐶3

(2)

So we assign three parameters for each topology node: position, inci-
dent derivative and emergent derivative. When generating variations,
the position of a node is changed while being constrained to the cube
edge where it is located, and the derivatives are varied while being
constrained to stay on the cube faces. Fig. 6 shows two geometric
variations for topo_1 and topo_19, respectively.

2.3. Computing minimal surfaces

Given any boundary generated in the above way, we can compute
the corresponding minimal surface bordered by this boundary using the
implicit method of [22], which requires no specified initial surface and
can freely change interior topology. In Fig. 7, we present two examples
demonstrating the process of minimal surface computation. The figure
showcases the resulting geometric shapes at different iteration stages.

However, the resulting minimal surfaces, when tiled in space, may
not be 𝐶1 continuous at the boundary. In addition, due to the lim-
ited accuracy of implicit representation by neural networks, the mesh
quality extracted by the marching cubes algorithm is poor at the
boundary, as shown in Fig. 8. Such non-smoothness and irregularity are
undesirable, as they will produce discontinuous mechanical properties
that cause stress concentration at the boundary.

To alleviate these problems, we extend the formulation of [22] to
ensure 𝐶1 continuity across boundary. In [22], a surface is represented
implicitly by the zero-level set of a function 𝑓𝜃 , which is implemented
by neural network with trainable weights 𝜃, and surface boundary 𝛤 is
represented explicitly by polygonal curves. Based on geometric measure
theory, the computation of minimal surface is solved as a minimal mass
problem:

arg min
𝜃

𝐸𝑥∼𝑈 [|∇𝑥𝑓𝜃(𝑥) + 𝛼#𝛤 (𝑥)|] (3)

where ∇𝑥𝑓𝜃(𝑥) is the gradient of 𝑓 at point 𝑥 uniformly sampled in the
1/8 cube domain 𝑈 , and 𝛼#𝛤 (𝑥) defines the Biot–Savart field that phys-
ically models the magnetic field generated by constant electric current
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Fig. 3. Boundary topologies on a cube face. Treating the cube edges as nodes, we can enumerate the 8 possible boundary curve topologies that pass through a face.

Fig. 4. Filtering non-closed or redundant boundary topologies. (a) is a non-closed topology because of the nodes having a degree of 1 (marked in red). (b-d) are of the same
topology under appropriate symmetry transformations: (b) to (c) by left–right reflection and (b) to (d) by rotation around the horizontal axis.

Fig. 5. The 20 unique boundary curve topologies for a 1/8 cube.

Fig. 6. Geometric variations of boundary curves can be generated by changing node position and derivative parameters. (a)(b) have topo_1 and (c)(d) have topo_19.
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Fig. 7. The geometry variation process in the process of computing minimal surfaces.
Fig. 8. Surface smoothness at boundary curves. The smoothness and surface regularity at boundary are largely improved after adding 𝐶1 continuity constraint. (a)(c) show the
input boundary curves and arrows indicating the surface normal directions at specified points. (b)(d) show the minimal surfaces without boundary constraints (top row) and with
boundary constraints (bottom row), with zoom-ins at the circled regions to highlight the surface details.
flowing through the boundary curves [22]. The network weights 𝜃 are
optimized by simple stochastic gradient descent to convergence.

We apply surface continuity constraints for boundary parts with two
symmetry types (i.e., translation, reflection) accordingly.

For boundary part 𝛤𝑡 ⊂ 𝛤 subject to translation symmetry, the
gradients of boundary point 𝑝𝑏𝑑𝑟𝑦 and its symmetric point �̄�𝑏𝑑𝑟𝑦 at
opposite face have equal magnitude, and their directions are the same
(Fig. 8(a)) or opposite (Fig. 8(c)), depending on whether the orientation
of the surface changes between the two boundary parts. Thus we add
the following 𝐸𝑡 to Eq. (3):

𝐸𝑡 =
∑

𝑝𝑏𝑑𝑟𝑦∈𝛤𝑡

|∇𝑝𝑏𝑑𝑟𝑦𝑓𝜃(𝑝𝑏𝑑𝑟𝑦) ± ∇�̄�𝑏𝑑𝑟𝑦𝑓𝜃(�̄�𝑏𝑑𝑟𝑦)| (4)

where - is used for the same direction gradients and + is used for
opposite direction gradients instead.

For boundary part 𝛤𝑟 ⊂ 𝛤 subject to reflection symmetry, we only
constrain the directions of gradients of every boundary point to be
perpendicular to the corresponding axis:

𝐸𝑟 =
∑

𝑝𝑏𝑑𝑟𝑦∈𝛤𝑟

|∇𝑝𝑏𝑑𝑟𝑦𝑓𝜃(𝑝𝑏𝑑𝑟𝑦) ⋅ 𝑎𝑝𝑏𝑑𝑟𝑦 | (5)

For example, the 𝐸𝑟 term for boundary points located at the cube faces,
which are perpendicular to 𝑥-axis, has 𝑎 = (1, 0, 0).

As shown in Fig. 8, with the boundary constraint loss terms, the sur-
face smoothness and regularity at the boundary are largely improved.

Remark. By incorporating surface tangential constraints on specified
boundary curves, we solve a more constrained variant of the Plateau’s
problem: the optimized surfaces strike a balance between pure surface
area minimization and boundary smoothness, and therefore approxi-
mate minimal surfaces. We name the structures we find as TPMS-like
shell lattices. Approximate TPMS structures are highly useful for mi-
crostructure material design, as shown by the widespread usage of the
various implicit function based approximations given by Eq. (1). In
Section 3 and Fig. 15, we show that our TPMS-like surfaces are high
quality approximations of minimal surfaces as good as commonly used
TPMS surfaces.
5

Fig. 9. The parametric representation of shell structures. topo_19_rrr represents
the unit topology. P represents node position parameter. d_in and d_out represent
the incident derivative and emergent derivative of node, respectively.

2.4. Shell construction

We obtain solid shell structures by extruding the smooth surface
along local normal vectors bidirectionally. We use different thickness
parameters to generate solid shell structures with different relative den-
sities. We can use a unified parametric representation to represent each
structure. The parameters include topology type, boundary parameters
(node position 𝑝 and node derivative 𝑑), and structure thickness 𝑡.
Take the shell structures in Fig. 9 as an example; this model can be
represented by one thickness and topology type parameters, six position
parameters, and twelve derivative parameters.

3. Results

In this section, we first show various shell-lattices generated by the
proposed method. Then the space of mechanical properties (Young’s
modulus E and Poisson’s ratio 𝜈), which can achieve for our shell-
lattices and TPMS-based shell-lattices in the same relative density, are
shown for comparison. The isotropy and surface area to volume ratio
(SA/V ratio) are also analyzed. Physical experiments are shown to
validate the conclusions drawn from numerical simulations.
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Fig. 10. Some shell-lattices generated by our method. There are large variations in both topology and geometry. (b)–(h) are cubic symmetric structures, (b)–(i) are orthotropic
structures, (a) and (j) are anisotropic structures.
3.1. Analysis of TPMS-like structures

Diverse TPMS shells with vastly different geometry, topology and
therefore material properties can be constructed with our method.
Examples are shown in Fig. 10, where we use different 1/8 cube topolo-
gies (see Fig. 5) and ways of composition to construct ten different
unit cube topologies; topology variations of inner surface induced by
different nodal parameters are also shown in (b1)(b2) and (h1)(h2) for
topo_1_rrr and topo_19_rrr, respectively. The material prop-
erties can be assessed based on the characteristics of the stiffness
matrix calculated through homogenization [26,27]. We note that unit
structures constructed by three reflections are always orthotropic due to
the symmetries along the three axes, as depicted in (b)–(i). On the other
hand, translation can lead to anisotropic structures, as shown in (a) and
(j). Furthermore, due to the congruent geometry specified along the
axis directions, (b)–(h) are cubic symmetric structures [28], i.e., each
of them has the same material properties along three axes. Although
the structure (a) is anisotropic, it is special because the nodal points
of topo_1_ttt always coincide with edge midpoints. Consequently,
its material properties are also equivalent along all three axes. We will
verify this property through physical experiments in Section 3.2.

To assess the mechanical properties of various structures, we em-
ploy the numerical homogenization method as detailed in [29]. We
discretize the unit cube using a regular 60 × 60 × 60 grid. The base
material in the homogenization is defined with a Young’s modulus of
1 MPa and a Poisson’s ratio of 0.3. For metamaterial architectures with
cubic symmetry, the linear elastic stress{𝜎}-strain{𝜀} relationship can
be expressed as:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜎11
𝜎22
𝜎33
𝜎23
𝜎31
𝜎12

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐶11 𝐶12 𝐶12 0 0 0
𝐶12 𝐶11 𝐶12 0 0 0
𝐶12 𝐶12 𝐶11 0 0 0
0 0 0 𝐶44 0 0
0 0 0 0 𝐶44 0
0 0 0 0 0 𝐶44

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜀11
𝜀22
𝜀33
𝜀23
𝜀31
𝜀12

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(6)

According to the stiffness matrix 𝐶, we can compute Young’s modulus
𝐸, Poisson’s ratio 𝜈, shear modulus 𝐺 and Zener’s anisotropy ratio
𝑍 that evaluates the anisotropy properties [30] in all directions, as
follows:

𝐸 = (𝐶2
11 + 𝐶12𝐶11 − 2𝐶2

12)∕(𝐶11 + 𝐶12) (7)

𝜈 = 𝐶12∕(𝐶11 + 𝐶12) (8)

𝐺 = 𝐶44 (9)

𝑍 = 2𝐶44∕(𝐶11 − 𝐶12) (10)
6

For comparison, we choose shell-lattices which resemble prior
TPMS-based shell-lattices based on the similarity of outer boundary
topology of unit cell. Five types of outer boundary topologies of TPMS,
including Schwarz Primitive (P), Schwarz Diamond (D), Schoen’s I-WP
(IWP), Schoen’s F-RD (FRD) and Neovius (N) are shown in Fig. 11. We
assign specific names to our structures based on their corresponding
boundary conditions. The P-like structures encompass topo_11_rrr,
topo_14_rrr and topo_19_rrr. The D-like structures consist of
topo_1_ttt. The IWP-like structures include topo_18_rrr. The
FRD-like structures encompass topo_3_rrr and topo_8_rrr.
Lastly, the N-like structures consist of topo_1_rrr.

We compare the mechanical properties (Young’s modulus 𝐸 and
Poisson’s ratio 𝜈) for both our shell-lattices and the corresponding prior
TPMS shell-lattices. To generate our shell-lattices, we employ various
parameters. For TPMS-based structures, we extract solid TPMS models
using two different iso-surfaces, denoted as 𝑐1 and 𝑐2. By enumerating
different values of 𝑐1 and 𝑐2, we can generate a series of solid TPMS
models [31]. The relative densities of all structures generated are fixed
at 0.3 (the error is controlled within 0.01). The 𝐸-𝜈 space covered
by our shell-lattices and prior TPMS-based shell-lattices are shown in
Fig. 12. The theoretical Hashin–Shtrikman bound (H-S bound) [32] for
isotropic stiffness under 0.3 volume fraction is plotted in a red dashed
line. We can see that the difference in 𝐸-𝜈 space between our structures
and prior TPMS-based structures for every group is significant. The
total 𝐸-𝜈 space covered by our structures have a larger area compared
with prior TPMS-based structures. Further, for our P-like and N-like
shell-lattices, the Young’s modulus space covered by them are larger
than by P and 𝑁 shell-lattices. N-like shell-lattices cover the largest
range of Young’s modulus in these structures. IWP-like shell-lattices can
exhibit larger Young’s modulus compared with IWP shell-lattices and it
is closest to the H-S bound in these structures.

Two reasons explain that our structures have a larger coverage area
in 𝐸-𝜈 space compared with prior TPMS-based shell-lattices. On the one
hand, changing our boundary parameters can provide richer shapes
than just adjusting the parameter 𝑐 of the TPMS implicit equations.
For example, Fig. 13, the first row shows a group of 𝑁 surfaces by
changing 𝑐 values, and the second row is a group of N-like surfaces by
changing boundary parameters. It is obvious that our group has richer
shape variations. On the other hand, the resulting surfaces generated
by our different topologies in Fig. 5 can have the same outer boundary
topology but different inner architectures after being composed into a
unit cell. For example, Fig. 10 shows that two different shell-lattices
(c) and (d) with similar outer boundary topology are generated by
topo_3_rrr, topo_8_rrr, and shell-lattices (e) and (h1) are gen-
erated by topo_11_rrr and topo_19_rrr. Given the same outer
boundary topology, richer interior topological and geometric variations
enable covering a large scope of mechanical properties.
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Fig. 11. Five types of outer boundary topologies of (a) Schwarz Primitive, (b) Schwarz Diamond, (c) Schoen’s I-WP, (d) Schoen’s F-RD, and (e) Neovius.
Fig. 12. The 𝐸-𝜈 space covered by our shell-lattices and TPMS-based shell-lattices.
Fig. 13. Comparing samples generated with implicit methods and our method for N boundary topology. The first row is a group of 𝑁 surfaces generated by varying the
parameter 𝑐 of implicit equations. The second row is a group of our N-like surfaces generated by varying the boundary parameters.
We also find that our P-like shell-lattices have better isotropic prop-
erties than P shell-lattices. Zener ratio is a standard metric to measure
anisotropy properties. The closer the Zener ratio is to 1, the closer the
structure is to be isotropic. We choose a surface that can be isotropic
from our P-like family and choose 𝑐 = 0 surface as the base surface
with two iso-surfaces 𝑐 = ±𝑎 for P shell-lattices. Different thickness and
𝑎 values can generate P-like and P shell-lattices with different relative
densities. The Young’s modulus and Zener ratio with respect to relative
density is demonstrated in Fig. 14 for P and P-like shell-lattices, which
shows that our P-like shell-lattices have better isotropy than P shell-
lattices and become isotropic at relative density 0.3. Further, our P-like
shell-lattices have a larger Young’s modulus when the relative density is
7

greater than 0.1. In comparison, it is difficult to achieve isotropy for the
P shell-lattices by only changing 𝑐 parameter at lower volume fractions.
The Zener ratio of the P shell-lattices using different 𝑐 parameters as
base surface has been presented in [33]. To improve the isotropy for
P shell-lattices, [30,33] combined P shell-lattices with other structures,
and [34] enhanced isotropy via variable thickness design.

We also compare our TPMS-like surfaces with TPMS surfaces ap-
proximated by Eq. (1) in terms of mean curvature distributions. By
definition, the mean curvature 𝐻 should be zero everywhere on a min-
imal surface; we calculate it on discretized surface meshes according
to [35] implemented by [36]. In Fig. 15 we show the mean curvature
distribution for three types of TPMS and TPMS-like surfaces. The size
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Fig. 14. (a) Young’s modulus and Zener ratio versus relative density for P-like and P shell-lattices. (b) The surface of Young’s modulus of P (left) and P-like (right) for the arrow
points to the structure.

Fig. 15. Comparison of the mean curvature 𝐻 between TPMS and TPMS-like surfaces. Per-vertex curvatures are color-coded on the surfaces, and the distribution histograms
of curvature values are shown below.

Fig. 16. The higher SA/V ratio of our shell-lattices and TPMS-based shell-lattices.
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Fig. 17. Test specimens of our P-like structures along different directions.
Fig. 18. The fabricated models and strain–stress curves.
of testing structures is 1 × 1 × 1 cm. Overall, the mean curvatures of
these surfaces are all close to zero, showing that our results are good
approximations of TPMS structures. Specifically, the mean curvatures
of P-like surface is more concentrated than that of the P surface, while
the mean curvatures of N-like surface are slightly more spread out than
𝑁 surface.

Finally, we analyzed the surface area to volume ratio (SA/V ratio)
of these shell-lattices. This property is crucial for microstructures,
especially for applications like biomimetic scaffolds and bioartificial
tissues. For each group of shell-lattices we compared, we selected the
shell-lattice with the higher SA/V ratio. The results, as depicted in
Fig. 16, demonstrate that our P-like, FRD-like, and N-like shell-lattices
have larger SA/V ratios when compared to the corresponding prior
TPMS-based shell-lattices.

3.2. Experimental validation

In this section, we validate our computational results through ex-
periments. We tested several of our shell structures with compres-
sion test, and compared the results to prior TPMS shell structures.
We created specimens consisting of a grid of 4 × 4 × 4 unit cells
(40 mm×40 mm×40 mm) and fabricated by stereolithography technol-
ogy with UV curable resin materials, as shown in Fig. 18. We perform
five groups of compression tests on a universal testing machine (MTS
Criterion44) and strain–stress responses were extracted and presented
9

in Fig. 18. The loading direction is consistent with the building di-
rection of specimens in fabrication. Note that in this paper, we only
examined the linear elastic properties of specimens. Evaluations on
more deformation behaviors [37,38], are considered to be future work.

First, we validate whether our P-like shell structures have better
isotropic properties. Uniaxial compression experiments are performed
on two shell structures with similar relative density (about 27.7%)
shown in Fig. 14. We obtained tested specimens that are oriented in
the [100], [110], and [111] directions by intersecting the 8 × 8 × 8
periodic structure and the cube along a specific orientation, as shown
in Fig. 17. As anticipated, the strain–stress curve in Fig. 18(a) and
(b) demonstrates that our P-like shell structure has a similar Young’s
modulus in all three directions, whereas the Young’s modulus of the
TPMS-P shell structure in three directions is distinct. In addition, the
Young’s modulus of the P-like shell structure is higher than that of the
P shell structure in the [100] direction.

We then selected shell structures with the larger and the smaller
Young’s modulus from our N-like family and IWP-like family, and
similarly with 𝑁 and IWP shell structures. As demonstrated in (c)
and (d) of Fig. 18, Young’s modulus of 4 × 4 × 4 N-like_high_E, N-
like_low_E and 𝑁 shell structures computed by homogenization with a
resolution of 100 × 100 × 100 are 0.157 MPa, 0.08 MPa, and 0.153
MPa, respectively, Young’s modulus of 4 × 4 × 4 IWP-like_high_E, IWP-
like_low_E, IWP_high_E, and IWP_low_E are 0.166 MPa, 0.123 MPa,
0.123 MPa, and 0.1 MPa, respectively. The relative density of these
structures ranged between 29.4% to 31.7%. The strain–stress curves
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Fig. 19. Functionally graded design. (a) A collection of structures all sharing the boundary topology topo_1_rrr. From left to right, they exhibit variations in relative density,
Young’s modulus, shear modulus, and Poisson’s ratio. (b) Left: variations in boundary geometry are presented, with the green color representing outer boundaries and the orange

denoting inner boundaries post-synthesis. Right: a shell structure bar with functionally graded attributes and seamless connectivity.
Fig. 20. (a) The data-driven pipeline for inverse homogenization. (b) A microstructural topological optimization example with inverse homogenization network: (b1) The initial
design domains of a cantilever beam. (b2) The Young’s modulus distribution of cantilever beam (grid 20 × 10 × 2) computed by [39]. (b3) The cantilever beam model infilling

according to our network prediction and Young’s modulus distribution.
are consistent with the computational results of the homogenization
method. The Young’s modulus of N-like_high_E shell structure is similar
to 𝑁 shell structure and is much bigger than N-like_low_E shell struc-
ture. However, the minimum aperture of our N-like_high_E structure
is much larger than that of 𝑁 shell structure, which reduces the need
for high-precision manufacturing techniques, as shown in the bottom
of Fig. 18(c). The Young’s modulus of our IWP-like_high_E shell and
IWP-like_low_E shell structures is larger than that of IWP_high_E and
IWP_low_E shell structures, respectively. For D-like shell structures,
we conducted compression tests in the [001], [010], [100], [101],
and [111] directions, and the strain–stress curve shown in Fig. 18(e)
revealed that D-like shell structure has the same Young’s modulus in
[001], [010], [100], and [101] directions.

4. Applications

Our TPMS-like modeling approach can provide new choices for shell
lattices in infill structure design. We discuss two potential applications
of our framework on functionally graded materials design and inverse
homogenization.

4.1. Functionally graded TPMS-like structures design

Functionally graded shell structures consist of microstructures with
topologically similar forms but varying spatial properties. On a macro
scale, these structures have the same topological form but different
geometric parameters. However, designing functionally graded shell
10
structures typically involves complex topology optimization for the
entire structure, which can be computationally expensive to ensure
material connectivity and smoothly varying physical properties. Our
proposed framework allows us to generate a group of unit cells with
the same outer boundary but changing inner boundaries, resulting in
functionally graded shell structures with perfect connections. In Fig. 19,
we present an example where topo_1_rrr is employed to design a set
of boundaries (as seen in Fig. 19(b) left). While these boundaries share
the same outer boundary, they exhibit different inner boundaries upon
being integrated into the unit-cell. It is important to emphasize that the
validity of the functionally graded structures is ensured a posteriori.
Specifically, if any structure exhibits irregularities, the sequence is
interrupted. In Fig. 19, the composite boundary in the 1/8 cubic space,
comprising both inner and outer contours, forms a closed loop, ensuring
the integrity of the resultant structure.

4.2. Inverse homogenization of TPMS-like structures

While the proposed modeling framework enables us to create fam-
ilies of TPMS-like shell lattices with rich variations in both topol-
ogy and geometry, the properties of generated structures can only
be assessed posteriorly. To make the design of our structures more
material property-oriented, we introduce an inverse homogenization
method in this section. This method constructs a mapping from material
properties to the shell structures and avoids the computationally ex-
pensive traditional method of solving it through topology optimization,
which requires the computation of effective properties [40]. Instead,
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we suggest using a data-driven model that learns the mapping and is
implemented as a deep neural network.

The inverse design pipeline is shown in Fig. 20 left. In particular,
based on the data-driven model introduced by [41], we train a condi-
tional generative adversarial network (GAN) [42] to learn the mapping
from material properties (𝐸, 𝜈) to geometric parameters (Fig. 9) of
our TPMS-like structures. We choose three topologies (topo_1_rrr,
topo_18_rrr, topo_19_rrr) to generate our dataset. We generate
samples of structures with random boundary parameters and surface
thickness in an appropriate range. The collected dataset contains 5136
different shell structures for training and testing. More details are
referred to Appendix.

In Fig. 20 (right), we present an example of microstructure topo-
logical optimization enabled by the inverse homogenization network.
Following the methodology in [39], we implement topological opti-
mization for a cantilever beam using a 20 × 10 × 2 grid, as depicted in
Fig. 20 (b1). The resulting distribution of Young’s modulus is displayed
in Fig. 20 (b2). In this particular example, we exclusively employ the N-
like structures to train the inverse homogenization network, enabling us
to predict the structural parameters associated with the desired Young’s
modulus distribution. Subsequently, we generate the corresponding N-
like structures based on these predicted parameters and fill the beam,
as shown in Fig. 20 (b3). It is important to note that while this network
predicts the properties of the structures, it does not guarantee the
connectivity of all generated structures.

Besides the aforementioned applications, the proposed shell lattices
form two independent connected spaces that can be filled with sec-
ondary or third materials to generate multi-functional properties such
as enhanced toughness, high energy absorption, improved vibration
and noise damping [2,43], and have also great potential in thermal and
fluid flow systems.

5. Conclusion

Due to the excellent physical and geometric properties, TPMS-based
shell-lattices have attracted a lot of research attention and have been
widely fabricated in many artificial systems, given the advent of addi-
tive manufacturing. In most existing research, TPMSs are described by a
limited set of mathematical expressions, and TPMS-based shell-lattices
with different relative densities are obtained by only adjusting a single
parameter. In order to exploit the structure and property space of shell-
lattice metamaterials, in this work, we present a new framework to
model richer families of TPMS-like shell structures, by parameterizing
the topology and geometry of 1/8 cubical boundary conditions and
constructing smooth minimal surfaces robustly.

To evaluate the properties of newly generated families of TPMS-
like shell-lattices, we choose those with the same boundary conditions
as prior TPMS-based shell-lattices, i.e., five classic structures (P, D,
IWP, N, FRD), for comparison. Our computational results based on the
homogenization method show that our TPMS-like shell-lattices cover
a larger 𝐸 − 𝜈 space, particularly for our N-like structures. Our P-like
shell-lattices can achieve elastic isotropy. The surface area to volume
ratio of our P-like, FRD-like, and N-like shell-lattices are larger than
corresponding prior TPMS-based shell-lattices. In addition, we show
two applications about functionally graded design and inverse design
which are enabled by our modeling framework.

There are numerous intriguing avenues for future research. For
instance, although we have utilized 1/8 cubes, degenerate surfaces can
still arise when solving minimal surfaces for multiple closed bound-
ary conditions. This limitation reduces the design space available for
our shell-lattices. To overcome this challenge, it may be worthwhile
to explore the use of even smaller units, allowing for more diverse
compositions and further enriching the families of complex TPMS-like
shell lattices.

Another aspect to consider is the impact of setting a large thickness
parameter to obtain structures with a high volume fraction. This can
11
result in reduced smoothness and even self-crossing due to intricate
topology, such as our FRD-like structures. To address these issues,
future research could focus on generating structures with non-uniform
thickness. This approach has the potential to improve smoothness and
mitigate self-crossing problems.

Moreover, a detailed exploration of the properties exhibited by the
more exotic and anisotropic structures we have generated would be
valuable. Additionally, investigating their inverse design using suitable
deep neural network architectures holds promise for further advance-
ment.

Lastly, conditioned inverse design, incorporating additional con-
straints such as specified outer boundaries, presents an interesting
area for exploration. This approach involves designing structures while
satisfying specific constraints, offering intriguing possibilities for future
investigations.
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Appendix. Details of inverse homogenization of TPMS-like struc-
tures

The objective of inverse homogenization design is building the
mapping from material properties (Young’s modulus 𝐸, Poisson’s ratio
𝜈) to geometrical parameters (position, derivative, and thickness) of
our TPMS-like structures. In [41], they generate the composite TPMS
structures by mixing three TPMS implicit equations. The composite
TPMS structures can be represented as three mixing weights and three
level-set values. They use a conditional generative adversarial network
(GAN) [42] to perform inverse design by learning the mapping from the
property space to the shape parameter space. Motivated by their work,
we also use a conditional GAN model to learn this mapping, and the
shape parameter space is defined by the geometrical parameters of our
TPMS-like structures. Given the condition of material properties, the
conditional GAN can generate multiple structures that satisfy targeted
material properties by sampling noise vectors from a predefined prior
distribution. The conditional GAN architecture includes the generative
model 𝐺, the discriminative model 𝐷, and the auxiliary property re-
gressor 𝑅, which are fully-connected neural networks (Fig. A.21). The
input of generator 𝐺 are specific material properties and noise vector

𝑧, predefined prior distribution 𝑃𝑧. The auxiliary property regressor 𝑅
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Fig. A.21. Neural network architectures used for inverse design.
Fig. A.22. The parametric representation of topo_1_rrr, topo_18_rrr, topo_19_rrr with cubic symmetric geometry.
Fig. A.23. The loss function curve of cGAN (a) and the property prediction error of 𝐸 (b) and 𝜈 (c) for the test dataset.
is to improve accuracy when mapping back to material properties. The
loss function of conditional GAN is:
min
𝐺,𝑅

max
𝐷

𝑉cGAN(𝐷,𝐺,𝑅) = E𝐱∼𝑃data [log𝐷(𝐱 ∣ 𝐲)]

+E𝐳∼𝑃𝐳 [log(1 −𝐷(𝐺(𝐳 ∣ 𝐲)))]

+𝜆(E𝐳∼𝑃𝐳 [|𝐲 − 𝑅(𝐺(𝐳 ∣ 𝐲))|]

+E𝐱∼𝑃data [|𝐲 − 𝑅(𝐱)|])

(A.1)

where 𝑥 means geometrical parameters of the TPMS-like structures and
y = (𝐸, 𝜈) in our work.

We choose three topologies (topo_1_rrr, topo_18_rrr,
topo_19_rrr) to generate our dataset. To simplify the representation
of parameters, we generate TPMS-like structures with cubic symmet-
ric geometry. Three structures can be represented as (𝑝1, 𝑝2, 𝑝3, 𝑑, 𝑡),
(𝑝1, 𝑑, 𝑡), (𝑝1, 𝑑, 𝑡), separately as shown in Fig. A.22. Then we randomly
sample in an appropriate range (Table A.1) for the position, derivative,
and thickness parameters to avoid disconnectivity and solid space
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issues. To classify the topology type of the geometric parameters
predicted by the network, we add two additional position parameters
for topo_18_rrr and topo_19_rrr, and their values are uni-
formly set outside the position range of topo_1_rrr. After removing
overlaps in 𝐸-𝜈 space between different topologies, the final dataset
comprises 5136 unit cells, including 2906 topo_1_rrr unit cells,
298 topo_18_rrr unit cells, and 1932 topo_19_rrr unit cells.
This dataset is divided into 5036 samples for training and 100 samples
(consisting of 50 topo_1_rrr unit cells, 10 topo_18_rrr unit cells,
and 40 topo_19_rrr unit cells) for evaluation purposes.

We train this cGAN for 105 iterations (2.6 min on a GeForce GTX
TITAN Xp) with a learning rate of 0.0002 and randomly sample 32
examples as a mini-batch for each iteration. The hyperparameter 𝜆 is set
to 20 in the loss function. To evaluate the precision of this conditional
GAN, we compute the property prediction error on the test dataset



Additive Manufacturing 77 (2023) 103779Y. Xu et al.

0

R

Table A.1
We set our 1/8 design space as a 2 × 2 × 2 mm cube. This table shows the appropriate geometrical parameters
range for position, derivative, and thickness.

Parameter
Type topo_1_rrr topo_18_rrr topo_19_rrr

Position (mm) 𝑝1 , 𝑝2 , 𝑝3:[-0.45, 0.45] 𝑝1:[0.45, 0.8], 𝑝2=𝑝3=-1 p1:[-0.4, 0.4],𝑝2=𝑝3=1
Derivative [1.0, 2.0] [2.0, 4.0] [1.0, 2.0]

Thickness (mm) [0.1, 0.3] [0.1, 0.4] [0.1, 0.5]
using the coefficient of determination (𝑅2-score):

𝑅2 = 1 −

∑𝑁
𝑖=1

‖

‖

‖

𝑦𝑖 − 𝑦′𝑖
‖

‖

‖

2

∑𝑁
𝑖=1

‖

‖

𝑦𝑖 − �̄�𝑖‖‖
2

(A.2)

where 𝑦𝑖 means the target material properties, �̄�𝑖 means the mean of the
target material properties, and 𝑦′𝑖 means the actual material properties
of structures generated by the predicted geometrical parameters. The
loss function curve of cGAN is shown in Fig. A.23(a). Removing some
self-intersecting models, the property prediction error of the test dataset
are shown in Fig. A.23(b)(c). The 𝑅2-score of 𝐸 and 𝜈 property are
.9906 and 0.9943, respectively.
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