
Repairing Man-Made Meshes via Visual Driven Global Optimization
with Minimum Intrusion

LEI CHU∗, The University of Hong Kong and Microsoft Research Asia
HAO PAN† and YANG LIU,Microsoft Research Asia
WENPING WANG, The University of Hong Kong

Fig. 1. Meshes from ModelNet [Wu et al. 2015] and ShapeNet [Chang et al. 2015] are repaired by our tool that produces large coherent manifold meshes
preserving the input visual appearances and features. Each manifold surface patch is colored differently. From top to bottom: the input meshes with scattered
and redundant patches, our results with meaningful components and the more concise results when hidden patches are removed (Sec. 6.2). The shell of the car
model is rendered in transparency to show inner structures.

3D mesh models created by human users and shared through online plat-

forms and datasets flourish recently. While the creators generally have spent

large efforts in modeling the visually appealing shapes with both large scale

structures and intricate details, a majority of the meshes are unfortunately

flawed in terms of having duplicate faces, mis-oriented regions, disconnected

patches, etc. , due to multiple factors involving both human errors and soft-

ware inconsistencies. All these artifacts have severely limited the possible

low-level and high-level processing tasks that can be applied to the rich

datasets. In this work, we present a novel approach to fix these man-made

meshes such that the outputs are guaranteed to be oriented manifold meshes

that preserve the original structures, big and small, as much as possible. Our

key observation is that the models all visually look meaningful, which leads

∗
This work was done when Lei Chu was an intern at Microsoft Research Asia.

†
Corresponding author.

Lei Chu, The University of Hong Kong and Microsoft Research Asia, lchu@cs.hku.hk;

Hao Pan, Yang Liu, Microsoft Research Asia, {haopan, yangliu}@microsoft.com; Wen-

ping Wang, The University of Hong Kong, wenping@cs.hku.hk.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

0730-0301/2019/11-ART158 $15.00

https://doi.org/10.1145/3355089.3356507

to our strategy of repairing the flaws while always preserving the visual

quality. We apply local refinements and removals only where necessary to

achieve minimal intrusion of the original meshes, and global adjustments

through robust optimization to ensure the outputs are valid manifold meshes

with optimal connections. We test the approach on large-scale 3D datasets,

and obtain quality meshes that are more readily usable for further geometry

processing tasks.

CCS Concepts: • Computing methodologies→ Mesh models.

Additional KeyWords and Phrases: Mesh repair, ShapeNet, ModelNet, visual-

driven, global optimization, output guarantee, minimal intrusion

ACM Reference Format:
Lei Chu, Hao Pan, Yang Liu, and Wenping Wang. 2019. Repairing Man-Made

Meshes via Visual Driven Global Optimization with Minimum Intrusion.

ACM Trans. Graph. 38, 6, Article 158 (November 2019), 18 pages. https:

//doi.org/10.1145/3355089.3356507

1 INTRODUCTION
The creation and processing of 3D digital models is a central problem

in computer graphics. 3D models are most frequently represented

by polygonal meshes, because of their flexibility and expressiveness.

Alongside the flexibility, however, come the various artifacts that

can be easily encoded by polygonal meshes but pose much difficulty

for downstream applications [Attene et al. 2013]. For example, while

a majority of geometry processing algorithms assume that the input

ACM Trans. Graph., Vol. 38, No. 6, Article 158. Publication date: November 2019.

https://doi.org/10.1145/3355089.3356507
https://doi.org/10.1145/3355089.3356507
https://doi.org/10.1145/3355089.3356507

158:2 • Lei Chu, Hao Pan, Yang Liu, and Wenping Wang

models are well-connected manifold surfaces with proper orien-

tations, so that differential quantities, texture mappings, semantic

segmentations and other advanced constructions can be applied on

the surfaces, the meshes can easily be non-manifold or disconnected

polygon soups with arbitrary and inconsistent orientations.

The problem becomes more urgent with the recent fast growing

collections of man-made 3D models created by users with varying

levels of modeling sophistication for diverse purposes; see [3DW

2018] for an example. On one hand, the data abundance raises hope

for advanced 3D computational tasks, including shape analysis and

synthesis, by also utilizing the maturing machine learning meth-

ods like deep learning that are data-hungry. To this end, various

semantically labeled and organized 3D datasets are created, e.g.

ModelNet [Wu et al. 2015] and ShapeNet [Chang et al. 2015]. On

the other hand, these man-made meshes are frequently flawed with

artifacts that prohibit further processing and hinder advanced appli-

cations built on clean data. For example, a majority of the models in

ShapeNet are nonmanifold meshes with duplicated faces, extensive

self-intersections, and fragmented and disconnected patches [Zhou

and Jacobson 2016] (see also Figs. 1 and 3).

While previouslymanymesh repairmethods have been developed

[Attene et al. 2013], they mostly focus on fixing digitally acquired or

man-made meshes representing solid objects, and are not suitable

for processing meshes of these large-scale datasets that have visual

plausibility but are far from representing valid 3D solids (see Sec. 7.4

for concrete evaluations). Indeed, an effective mesh repair procedure

must fit for the characteristics of the source mesh models and the

target applications. In this work, we present a novel tool designed

for repairing these abundant meshes to enhance their usability for

various downstream geometry processing tasks. Observing themesh

models extensively, we identify a mismatch between visual quality

and structural quality, which guides the design of our approach. To

be specific, we find the major characteristics of these man-made

meshes are:

(1) visually, these models look meaningful in both large scale

structures and fine level details, as they are crafted by the

creators with great efforts and attention;

(2) structurally in terms of geometry and connectivity, however,

the models frequently contain redundancy, mis-orientation

and wrong tessellations, which can be attributed to both

human errors and modeling software inconsistency.

As such, we take a visual perspective and fix the structural defects as

much as possible while obeying the visual guidance and preserving

the visual quality.

Our approach resolves the commonly found problems of dupli-

cations, mis-orientations and mis-connections with man-made 3D

meshes by a pipeline consisting of two major steps. The first step ap-

plies a sequence of visual driven operations that measure, reorient,

simplify, and intersect the local patches of the input mesh, to obtain

a set of elementary manifold patches that have visually guided ori-

entation preferences, potential connections and no redundancies;

throughout this process, all delicate but important mesh structures

are well preserved. The second step is a global combinatorial opti-

mization that connects the isolated and mis-oriented elementary

patches into coherent manifold surfaces while respecting the visual

appearance of themeshmodel as much as possible.We formulate the

combinatorial optimization as an integer linear programming (ILP)

that we solve efficiently with a novel approximate solver. Through

our pipeline, the result mesh is guaranteed to be a clean manifold

surface, has meaningful orientation and connections and minimum

deviation from the input mesh, and is therefore more usable by

subsequent geometry processing procedures.

We have applied our automatic mesh repair procedure to large

scale 3D datasets, includingModelNet and ShapeNet (Sec. 7.2); down-

stream tasks, e.g. remeshing and texture mapping, critical for so-

phisticated applications are more readily carried out on the fixed

models. Through comparison with previous methods, our tool is

demonstrated to be more suitable for robustly processing these

datasets and preserving high visual quality with meaningful struc-

tures (Sec. 7.4). While our tool does not fix problems like gaps and

holes that can be well-defined only for solid objects, it complements

other methods that target these defects by providing largely im-

proved meshes as their input to work properly. The source code and

processed datasets are open sourced
1
to facilitate future research.

2 RELATED WORK
Mesh repair is a practical problem that has been studied extensively

for various situations. In particular, a large amount of previous

works focus on repairing mesh models representing solid 3D objects

for physical simulation and 3D printing, with the meshes either

acquired from the real world by digitization or modeled manually

[Attene et al. 2013; Ju 2009]. However, the particular challengewe ad-

dress in this paper is a relatively new one, as it comes along with the

abundance of diverse man-made 3D datasets which contain models

mostly with visual plausibility rather than physical validity. There-

fore, few existing mesh repair works are suitable for this problem;

see Sec. 7.4 for detailed comparisons. Nonetheless, there are works

with which our method shares similarities in design principles and

methodology. In this section, we briefly review the related mesh

repair works that feature global approaches with output guarantees,

as well as the approaches that work directly on meshes for the sake

of minimal intrusion; readers are referred to [Attene et al. 2013; Ju

2009] for extensive surveys of mesh repair methods. We also discuss

the utilization of visual guidance and topology optimization in both

mesh repair and other geometry processing tasks in general.

Global and direct mesh repair methods. As discussed in [Attene

et al. 2013], mesh repair methods can be roughly classified into local

approaches and global ones: while local approaches try to detect

and fix a certain kind of defect, global methods generally fix a range

of problems that are actually correlated and guarantee the output

to be manifold surfaces bounding a 3D solid. Most global methods

achieve such generality by using an intermediate volumetric 3D

representation, e.g. an occupancy voxel grid [Ju 2004; Nooruddin

and Turk 2003], a voxel grid encoding the distance function from

boundary surface [Curless and Levoy 1996; Hornung and Kobbelt

2006; Kazhdan and Hoppe 2013], or irregular tessellations of the 3D

volume using a BSP tree [Murali and Funkhouser 1997] or tetrahedra

mesh [Hu et al. 2018]; the intermediate volumetric representation is

then signed to distinguish interior from exterior, and the manifold

1
See https://github.com/lei65537/visual_driven_mesh_repair.

ACM Trans. Graph., Vol. 38, No. 6, Article 158. Publication date: November 2019.

https://github.com/lei65537/visual_driven_mesh_repair

Repairing Man-Made Meshes via Visual Driven Global Optimization with Minimum Intrusion • 158:3

boundary surface is finally extracted as the interface. While guaran-

teeing manifold output, a common problem with the global methods

is that the input surfaces are generally resampled and remeshed, e.g.

due to the scan conversion to regular grids or the re-tessellation

by BSP trees. This may be undesirable, especially when the input

meshes have sharp features, are hand-crafted with highly efficient

polygons, or carry additional data like texture maps. In addition,

these methods assume that the input surfaces enclose solid vol-

umes, which however generally does not hold for the man-made

3D datasets we consider.

Different from the global methods that rely on an intermediate

volumetric representation, there are tools that work on the polygo-

nal meshes directly to avoid unnecessary changes of the input. For

example, [Guéziec et al. 2001; Rossignac and Cardoze 1999] convert

nonmanifold mesh models into manifold meshes by first decompos-

ing them at singular vertices and edges and then greedily combining

the parts while respectingmanifoldness. MeshFix [Attene 2010] fixes

digitized meshes bounding solid objects by detecting and repairing

erroneous regions only. [Attene 2014] resolves all self-intersections

of a mesh by subdividing the intersecting faces robustly using a

hybrid geometric kernel [Attene 2017] to obtain a nonmanifold com-

plex, and then extracts a manifold outer hull of the complex that

consists of the most exterior faces by a repeated region growing

procedure. [Attene 2016] takes a similar approach but focuses on

making sure the outer hull bounds a valid volume for 3D printing.

Similar to the global methods, our approach guarantees the out-

put mesh to be manifold, as we try to fix redundancies, inconsistent

tessellations, flipped orientations and missing connections in one

framework. On the other hand, different from the previous works,

our method targets surface meshes that are frequently open rather

than bounding 3D solids. To this end, our approach works with

polygon meshes directly and makes the repair minimally intrusive,

which shares similarity to [Attene 2014, 2016]. However, when pro-

cessing the physically imprecise man-made models, it is common for

the outer hulls to either miss the major components or apply uneven

changes to them, while our visual guided approach works robustly

and obtains meaningful structure preserving results (Sec. 7.4).

Visual guided geometry processing. Since generating visual con-
tent is fundamental to computer graphics, visual guidance is used in

many geometry processing tasks. For example, mesh simplification

has been driven by preserving the visual quality of 3D models while

reducing the amount of mesh elements as much as possible [Garland

and Heckbert 1997; Hoppe 1996; Lindstrom and Turk 2000; Zhang

and Turk 2002]. Image-driven surface editing and geometric mod-

eling takes one step further, as the user-specified visual difference

is back-propagated to the object shape through inverse rendering

procedures [Gingold and Zorin 2008; Liu et al. 2018].

Visual guidance is used in mesh repair methods mostly for the

signing of volumetric representations. For example, in [Nooruddin

and Turk 2003], an object is viewed in multiple directions and the

patterns of ray-object intersection, defined either by parity count

or simply by ray-stabbing, are used to determine which regions are

inside the object. In space carving methods, distance fields are also

signed according to the viewing directions of range scans [Curless

and Levoy 1996; Furukawa et al. 2007]. Generalized winding number

(a) (b) (c)

Fig. 2. 2D illustration of the repair pipeline. (a) depicts the input mesh whose
faces are shown as line segments, with shadow showing backside of a face.
The input mesh has flipped faces, redundant faces and self intersections. (b)
shows the cleaned and reoriented face patches after the visual processing
step (Sec. 4). (c) shows how the patches are further connected into large
and coherent pieces by the manifold mesh reconstruction step (Sec. 5).

provides another way of signing volume [Jacobson et al. 2013; Zhou

et al. 2016], as it integrates normal directions over the entire bound-

ary surface. However, due to the reliance on normal directions, the

generalized winding number cannot handle mis-orientations of in-

put surfaces [Hu et al. 2018]. In contrast, the parity of collision is

used by Bernstein and Wojtan [2013] to determine inside/outside

when tracking the topological changes of interacting objects.

In our approach to the mesh repair problem, visual guidance is

used extensively, to determine how mesh faces should be oriented,

what parts are redundant (Sec. 4) and how different components

should be connected for better visual regularity (Sec. 5).

Topology constrained integer optimization. Global mesh repair

methods guarantee the output surfaces to be manifold, as a result of

the conversion of the intermediate volumetric representation to the

boundary representation. However, in our method, the manifoldness

is guaranteed by breaking the input mesh into elementary manifold

patches, and further searching the optimal connections among the

patches inside the space of manifoldness, which is formulated as an

ILP. Closely related is the problem of topology constrained surface

reconstruction from basic surface patches, which can be defined by

cross-sectional curves [Huang et al. 2017; Lazar et al. 2018; Zou et al.

2015] or detected by landmark triangulations [Huang et al. 2014].

Our enumeration of all manifold connections and the formulation

as an ILP are inspired by [Lazar et al. 2018]; on the other hand, due

to our particular task, we apply constraints on surface orientations

rather than surface genus, and propose a novel rounding scheme

that exploits the dual structure of the optimization problem and is

highly efficient for finding close-to-optimal integer solutions (Sec. 5).

Windheuser et al. [2011] formulate the nonrigid matching of two

shapes as an ILP that searches in the product manifold of orientation

preserving diffeomorphisms, and solve it by a sequence of relaxed

LPs. In contrast, the ILP in this paper is solved efficiently by one

relaxed LP and one global rounding.

3 METHOD OVERVIEW
We design a pipeline that translates the high visual quality of a 3D

model into valid manifold structures. After a simple preprocessing of

merging coinciding vertices and removing degenerate and duplicate

faces, the pipeline consists of two major steps; see a 2D schematic

illustration in Fig. 2 and a real example in Fig. 3. The first step

focuses on visually measuring and cleaning the elementary patches

of a mesh in a localized and feature-preserving manner (Sec. 4), to

prepare them for the second step of manifold mesh reconstruction.

To be specific, a sequence of operations measure the visibility and

ACM Trans. Graph., Vol. 38, No. 6, Article 158. Publication date: November 2019.

158:4 • Lei Chu, Hao Pan, Yang Liu, and Wenping Wang

(a) PN: 29054 (b) PN: 64 (c) PN: 47 (d) PN: 22 (e) PN: 3 (f)

(c̄) (ē)

Fig. 3. The visual driven global mesh repair pipeline applied on a bag model from ShapeNet. From left to right: (a) the input mesh, with its scattered manifold
surface patches (Sec. 4.1) rendered in different colors; (b) after preprocessing that merges coinciding vertices and removes duplicate faces (Sec. 3); (c) after
visual-driven processing (Sec. 4) that further reorients and merges scattered patches and removes visually redundant patches shown in (c̄); (d) after the global
optimization of patch orientation and connection (Sec. 5), intersecting patches (e.g. around the rings) are connected into coherent and larger pieces; (e) the
global optimization applied on the subset of patches excluding hidden ones shown in (ē), to enable more connections of different components (Sec. 6.2); (f)
is (e) rendered with textures copied from the initial input, which are well preserved by our minimally intrusive approach. The number of manifold surface
patches PN is shown for each mesh. For (a) and (b), we have used two-sided shading so that their many flipped faces can be shown.

orientation preferences of manifold patches in the mesh, reorient

and merge them if possible, resolve intersections so that possible

connections can be detected, and remove redundant patches which

contribute nothing to the visual appearance of the whole model.

Given these processed elementary manifold patches with possible

connections and orientation preferences, the second step then tries

to reorient and connect them into coherent and large manifold

meshes through a global optimization (Sec. 5). This optimization

problem is formulated as an ILP for which we find close-to-optimal

solutions by relaxation to LP and efficient rounding. The finally

extracted mesh is guaranteed to be manifold (Sec. 6) and preserves

the original features and visual appearances.

Before going into details of the pipeline, we first introduce the

notions required for subsequent presentation. A summary of impor-

tant notations used throughout the paper is given in Table 2. In this

paper we assume the input mesh has triangular faces, although the

discussions can be easily extended to polygonal meshes.

We represent an input triangle meshM = (V , F) with a set of ver-

tices V = {vi } and a set of triangle faces F = { fi }, where each face

fi = (vi0,vi1,vi2) is a tuple of vertices from V . Edges of the mesh

can thus be collected as E = {ei }, with each edge ei = {vi0,vi1}
represented by its two endpoint vertices without order. The orien-

tation of a face is encoded by the cyclic sequence of its vertices.

An edge is regular if it has only one adjacent face or two adjacent

faces that induce opposite directions for the shared edge, and sin-
gular otherwise; in addition, a singular edge adjacent to two faces

with inconsistent orientations is called orientation conflicting (see

Fig. 4). Let all the faces incident to a vertex v be v∗; we build a

graph with these faces as nodes and a link between two nodes if

their corresponding faces share an edge incident tov : the vertexv is

called regular if the graph is a chain or cycle, and singular otherwise
[Guéziec et al. 2001]. The meshM is manifold if and only if it has

no singular vertices.

Since our repairing pipeline works on the elementary manifold

patches of a mesh, we also define the patches. A surface patch P
of the mesh M is defined by a set of faces from F , i.e. P = { fi ∈
F }. The patches are 2-chains in the language of chain complexes

[Edelsbrunner and Harer 2010], based on which we can define the

boundary curve of a patch P as the 1-chain ∂P =
∑
i ∂ fi , where

Fig. 4. Three types of edges. From left to right: a regular edge adjacent to
two consistently oriented faces, an orientation conflicting edge adjacent to
two faces with flipped orientations, and a singular edge adjacent to more
than two faces.

∂ fi = ai0ei0 + ai1ei1 + ai2ei2, with ai j = ±1 denoting whether the

face fi induces positive or negative directions for its edges ei j . The
reference direction of an edge can be chosen arbitrarily but remains

fixed. Note that while the patch boundary curve thus defined has

coefficients for its constituent edges, in the following discussion for

convenience we say an edge e ∈ ∂P if e appears as a non-vanishing
term in the curve 1-chain regardless of its specific coefficient.

The above definitions involve the topological structure of a mesh

only. To give geometry to the mesh, each vertex vi is assigned 3D

coordinates vi ∈ R3
. As preprocessing, we normalize an input mesh

to make its bounding box centered at origin with a maximum side

length equal to one. We then merge the almost coinciding vertices

and remove combinatorial duplicates (two faces having the same

set of vertices) and degeneracies (a face with less than three distinct

vertices) by applying Alg. 1 with ϵm = 10
−10

.

4 VISUAL DRIVEN PROCESSING
The visual driven processing takes an input mesh and outputs a

collection of manifold patches to be consumed by the global mani-

fold mesh reconstruction step (Sec. 5). In this process, we apply a

combination of three different operations:

(1) find the manifold patches, measure their preferred orienta-

tions through visibility counting and reorient, and merge

them if possible (Sec. 4.1);

(2) measure the visual significance of each patch and remove

unnecessary patches (Sec. 4.2);

(3) resolve self-intersections to detect connections (Sec. 4.3).

Each operation targets different problemswith theman-mademeshes.

The first operation reorients the flipped patches that are visible to

outside viewpoints and merge patches ready to be combined. The

ACM Trans. Graph., Vol. 38, No. 6, Article 158. Publication date: November 2019.

Repairing Man-Made Meshes via Visual Driven Global Optimization with Minimum Intrusion • 158:5

Algorithm 1:Merge&Clean

Input: meshM = (V , F), coincidence threshold ϵm
Output: meshM ′ = (V ′, F ′)
V ′ = {}, F ′ = {};
for i ← 1 to |V | do

if ∃vj ∈ V ′, | |vi − vj | | ≤ ϵm then
replace vi with vj for all f containing vi ;

else
V ′ = V ′ ∪ {vi };

end
end
for i ← 1 to |F | do

if |{vi0, · · · }| < 3 or ∃fj ∈ F ′, {vi0, · · · } = {vj0, · · · }
then

do nothing;

else
F ′ = F ′ ∪ { fi };

end
end

second operation removes visually redundant patches that cannot

be found as face duplications. Finally, to handle a mesh model with

self-intersections that frequently are intended to be meaningful con-

nections, the third operation resolves the self-intersections to split

mesh faces where necessary. The three operations are combined in

a procedure summarized by Alg. 2. Next we present the details.

Algorithm 2: Visual driven mesh processing

Input: meshM , significance threshold ϵvisual
Output: updated meshM with a collection of manifold

patches and no redundancies

for i ← 1 to 2 do
// Sec. 4.1

detect all manifold surface patches {Pi ⊂ M};

compute patch orientation likelihood S+(Pi) and reorient;

merge patches with consistent orientations ;

// Sec. 4.2

sample patches with points;

compute visual significance score {VS(Pi)} and visual

affinity list L;

while min {VS(Pi)} ≤ ϵvisual do
remove Pmin = arg minPi {VS(Pi)};

update VS(Pj) for Pj ∈ L(Pmin) and L;

end
// Sec. 4.3

resolve all self-intersections;

if no self-intersection then break ;

else Merge&Clean with ϵm = 0 ;

end
apply the operation in Sec. 4.1 again;

4.1 Manifold patch detection, orientation and merging
Due to structural validity, orientable manifold surface patches are

the basic components on which the subsequent visual driven pro-

cessing and global optimization of orientation and connection are

applied. An orientable manifold patch Pi = { fj } contains a set of
faces connected by regular edges; singular edges adjacent to the

faces are added to the patch boundary ∂P . We detect an orientable

manifold patch by a flooding procedure that starts from a seed face

and adds all neighboring faces crossing regular edges into the patch;

all patches are detected by applying the flooding procedure on the

remaining faces. Note that since singular edges can only appear at

boundary, an unorientable surface like Möbius strip will be discon-

nected along orientation conflicting edges which become part of

the boundary curve (see Fig. 7, can also be verified by the patch

boundary computation (Sec. 3)); the handling of vertices on the

singular edges is discussed in Sec. 6.1.

For two neighboring patches with shared boundary edges that

are orientation conflicting, it is possible to combine the two patches

by flipping the orientation of one patch. To resolve such cases, we

first measure the orientation preferences of all surface patches using

a visibility computation and reorient them accordingly, and then

apply a greedy process to merge the patches as much as possible.

By observing the mesh model in various viewpoints, we can

collect the chance of an exposed surface patch being positively

oriented. In particular, for a surface patch Pi , let S+(Pi) ∈ [0, 1] be
the likelihood of the patch orientation being aligned with visibility,

and S−(Pi) = 1 − S+(Pi) for being flipped against visibility. We

compute the orientation likelihoods by counting positively and

negatively exposed pixels, Pix+(Pi) and Pix−(Pi), for all patches:

(1) Pix+(Pi) = Pix−(Pi) = 0 for all i;
(2) with a customized shader of a standard graphics library, ren-

der the mesh model in N = 42 viewpoints {ci ∈ R3}i=1, · · · ,N
evenly sampled on the bounding sphere of the model, to ob-

tain N images of size 512 × 512, where each pixel records the

patch it belongs to;

(3) for each image pixel under viewpoint ci and its corresponding
surface point p in patch Pj with normal n, if ⟨n, ci − p⟩ > 0,

then Pix+(Pj) ← Pix+(Pj) + 1; otherwise if ⟨n, ci − p⟩ < 0,

then Pix−(Pj) ← Pix−(Pj) + 1;

(4) compute orientation likelihood as

S+(Pi) =

{
Pix+(Pi)

Pix+(Pi)+Pix−(Pi)
, if Pix+(Pi) + Pix−(Pi) > ϵpix

0.5, otherwise

where ϵpix = 5 is used to skip those patches with too few

visible pixels to be informative. For each patch Pi , if S+(Pi) <
0.5, it is flipped.

After each patch is reoriented according to visibility, we can use

a simple flooding procedure to merge patches that previously were

separated by orientation conflicting edges. The process starts from

the patch Pi of largest surface area; for each neighboring patch Pj
that is separated from Pi by orientation conflicting edges, if the

two patches are now consistently oriented, they are merged. By

applying the flooding procedure on remaining patches, all patches

are merged to be as large as possible.

ACM Trans. Graph., Vol. 38, No. 6, Article 158. Publication date: November 2019.

158:6 • Lei Chu, Hao Pan, Yang Liu, and Wenping Wang

4.2 Visual significance scoring and iterated patch removal
Geometrically redundant but combinatorially different patches are

prevalent in the man-made meshes but cannot be removed by pre-

processing; see Fig. 3 (b) inset for such an example of two overlap-

ping patches with different triangulations. The key property with

such duplications is that after removing the redundant patches the

overall mesh still looks almost the same. Similarly, the noisy small

scale patches generated by modeling inaccuracies can also be safely

removed without changing the mesh appearance. Based on this ob-

servation, we design a visual driven procedure for redundant patch

removal.

We define the visual significance of a surface patch as the visual

difference it introduces when it exists compared with when it is

absent. To measure the visual differences, we first generate a set

of sample points over each surface patch, through which we then

render focused regions with and without the patch and compare

the depth images for the quantified significance. Based on the vi-

sual significance scores, an iterated removal of the least significant

patches is applied; see Alg. 2 for the process. Next, we focus on how

to compute and update the visual significance scores.

The number of sample points generated for each patch depends

on the patch area. In particular, for a patch Pi , we allocate Ns (Pi) =

max

(
|Pi |

diaд2
· Ntot ,Nmin

)
points that are uniformly sampled on the

patch surface. Here we use Ntot = 1000,Nmin = 20 for a good

coverage of all possible viewing directions, |Pi | is the patch area,

and diaд is the diagonal length of the mesh model’s bounding box.

Through the densely sampled viewing points, we render the

localized regions of the mesh model with and without each patch

Pi being considered, to measure its visual significance VS(Pi) by
counting pixel differences, and to maintain a list L of visual affinity

among the patches for fast updating of significance scores after each

patch removal.

In particular, for each sampled viewpoint cj with unit normal

nj on the patch Pi , by positioning the camera at {cj + nj , cj −
nj } and looking at the patch along normal, and for each camera

position further switching the patch on and off, we render the model

with orthogonal projection and a box viewing frustum, to obtain

four depth maps d+j,on, d
+
j,off, d

−
j,on, d

−
j,off, and four patch id maps

id+j,on, id
+
j,off, id

−
j,on, id

−
j,off where each pixel records the visible patch

it corresponds to, all of size 128 × 128. The box viewing frustum

has the parameters znear = 1 − ϵcut , zf ar = 2.8, with a clipping

square of side length max (bbox(Pi), cslmin), where ϵcut = 10
−5

is

used to accommodate depth inaccuracy in the rendering pipeline,

bbox(Pi) gives the side lengths of the bounding box of Pi so that we
focus on how the current patch affects the visual appearance locally,

and cslmin = 0.08 is a lower bound of field-of-view so that we do

not zoom into very small scale patches that are probably noise due

to modeling inaccuracies. To accelerate rendering, we only draw

patches whose bounding boxes intersect the viewing frustum.

Given the rendered images, the visual significance score is com-

puted as

VS(Pi) =

∑Ns (Pi)
j=1

∑
s ∈{+,−} ms

j,on ·
(
dsj,off − d

s
j,on

)
∑Ns (Pi)
j=1

∑
s ∈{+,−}

���ms
j,on

��� ,

(a) (b) (c) (d)

Fig. 5. Visual driven simplification of nesting doll-like models. (a) and (c) are
the two input meshes, where the inner structure (green) in (a) has visible gap
to the outer shell (pink, shown in half to reveal the inner structures), while
in (c) there is no visible gap between the two layers. (b) and (d) are results
after simplifying (a) and (c) respectively. (b) has two layers untouched. (d)
only keeps the outer shell.

where m±j,on = {id
±
j,on = i} are the binary masks for pixels covered

by Pi . In case there is no pixel associated with the patch in all

views, which can be due to the patch being entirely duplicated and

hidden by other patches or it being too small to be visible, the visual

significance score is set to zero.

After the scores are evaluated for all patches, we iteratively re-

move the least significant one and update the scores of other patches

affected by the removal. The affected patches are given by the visual

affinity list L: Pj ∈ L(Pi) if and only if Pi appears in the locally

rendered images of Pj when Pj is switched off, which implies that

the removal of Pi can potentially change the significance score of

Pj . The affinity list is built from the id maps; each time a patch Pi is
removed, the existing patches in L(Pi) are re-evaluated for visual

significance and meanwhile their id maps lead to the update of

corresponding affinity list entries.

The iterated patch removal process is continued until the least

visual significance score is larger than ϵvisual , which we set as 5.6×

10
−3

empirically for all experiments. The chosen threshold ensures

the removal of truly redundant patches while preserving intricate

but meaningful structures; see a test in Fig. 5. In addition, noticing

that after removing a redundant patch, the remaining patches would

only have increased significance, we skip updating patches with

scores larger than ϵvisual during the iterations for acceleration.

4.3 Self-intersection resolution
When creating the mesh models, people frequently place primitive

components such that they have intersections and intend the com-

ponents to be connected there. The self-intersections are defined

as faces intersecting at places other than their shared edges or ver-

tices; we detect such self-intersections and re-triangulate the faces

involved, so that the components share conforming vertices and

edges and can possibly be connected in subsequent steps. The ro-

bust detection and resolution of self-intersections of a mesh model

rely on exact geometric kernels like rational numbers; in our im-

plementation we use libigl [Jacobson et al. 2018; Zhou et al. 2016]

which further uses [CGAL 2018] for exact constructions. Once the

self-intersections are resolved, the mesh is processed to merge ex-
actly coinciding vertices and remove combinatorially degenerate or

duplicate faces (Alg. 1 with ϵm = 0 applied to the rational number

coordinates), and then fed to a second pass of visual processing to

reorient, merge and simplify the newly generated patches (Alg. 2).

ACM Trans. Graph., Vol. 38, No. 6, Article 158. Publication date: November 2019.

Repairing Man-Made Meshes via Visual Driven Global Optimization with Minimum Intrusion • 158:7

Fig. 6. A 2D illustration of the possible manifold configurations for singular
curves of degree 2 (on the left) and 3 (on the right), where a segment denotes
a patch, and a circlemeans a connection between two patches. For the degree
2 case, there are 6 configurations of connections; the blue arrows show the
orientations of underlying patches. For the degree 3 case, there will be 20
configurations, 4 for each of the three cases with connected patches, and 8
for the lower right case with all three patches disconnected.

The reason for applying a first pass of the other two operations

before resolving self-intersections, is to reduce early in the removal

operation the occurrence of tangentially touching patches which

are numerically unstable and may lead to overly fragmented inter-

section results. Simplifying meshes with very fragmented patches

can be time consuming (Sec. 7.3).

5 MANIFOLD MESH RECONSTRUCTION THROUGH
GLOBAL OPTIMIZATION

After the previous visual driven processing, we have a collection of

non-redundant surface patches which are disconnected at singular

edges. In this section, we present a global approach to reorient and

connect the patches as much as possible, so that more complete and

structurally meaningful manifold meshes are reconstructed from

the scattered patches.

The manifold reconstruction problem is combinatorial in nature,

so we formulate the global approach as an integer linear optimiza-

tion, where the variables are the different connections at the patch

separating curves, and the objective is to connect the patches as

much as possible, while also maximizing the alignment with orienta-

tion likelihoods (Sec. 4.1), as well as the visual regularity of patches

across connections. We present the problem setup in Sec. 5.1, the

detailed formulation of optimization in Sec. 5.2, and show how to

solve it efficiently with a novel rounding method in Sec. 5.3.

5.1 Enumerating and measuring the connections
The manifold patches are separated by polyline curves made of

singular edges; the details for constructing these singular curves are
given in Appendix A.1. For a singular curve Ci of degree N , denote

the list of N patches sharing the curve as Adj(Ci). Note that it is
possible for a patch to occur multiple times in the adjacent patch

list, which implies the patch connects to the curve in multiple ways.

Through a shared singular curveCi , two patches Pj , Pk ∈ Adj(Ci)
can be reoriented consistently and connected into one larger patch:

we call such a connection a dual edge, denoted as de(Pj , Pk ,Ci ,o),
where o ∈ {+,−} signifies the orientation of Pj being preserved or

flipped, and the orientation of Pk is induced accordingly. Note that

when Pj and Pk are the same patch, the dual edge can be invalid by

inducing conflicting orientations on the patch; we omit such invalid

dual edges in computation. We additionally create a null patch Pnull

with arbitrary orientations and use de(Pj , Pnull ,Ci ,±) to denote the
cases of Pj being disconnected at Ci .
The patches and the dual edges between patches form a graph

G = ({Pi }, {de}). In addition, a manifold surface formed by the

patches can be identified with the graph with a subset of dual edges.

Therefore the manifold surface reconstruction problem can be re-

garded as a graph topology optimization problem, where a subset

of graph edges are selected to maximize connectivity and visual reg-

ularity. However, in such a formulation extra care needs to be taken

to ensure compatible dual edges are selected to imply manifoldness

at the singular curves. To circumvent this problem, we change the

variables to all manifold configurations instead.
For each singular curve, we can enumerate all possible configu-

rations of manifold connections, or equivalently sets of dual edges,

for its adjacent patches through the curve. For example, a degree

2 curve has 6 possible connection configurations, and a degree 3

curve has 20 configurations in total; see Fig. 6 for an illustration. The

enumeration gives a list of configurations that grow exponentially

with respect to the curve degree, though in practice curves with de-

grees larger than 4 are rare. In addition, a configuration may contain

invalid or conflicting dual edges that induce opposite orientations

for a patch; such self-conflicting configurations are discarded from

consideration.

The connection of two patches induced by a dual edge can be eval-

uated for visual regularity, which is used subsequently for searching

globally optimal connections among all patches.We define the visual

regularity as a measurement of patch normal smoothness across the

primal singular curve of the dual edge:

Sr eд
(
de(Pi , Pj ,Ck ,o)

)
=

∑
e ∈Ck

we

(
1 −

anдle(Pi , Pj , e,o)

π

)
,

where e ∈ Ck is an edge in the singular curve, weight we =
|e |
|Ck |

is the ratio of the edge length over the curve length, and

anдle(Pi , Pj , e,o) is the angle between the normal vectors of the

two patch faces incident to e , with the patch orientations induced

by o ∈ {+,−}. Clearly, Sr eд ∈ [0, 1] and gets larger for patches with

more aligned normal vectors at the singular curve, implying that

they are more encouraged to be connected. When either patch of the

dual edge is Pnull , we set Sr eд = 0 to discourage this disconnection.

In practice, we find that two patches may share a relatively tiny

singular curve that is possibly noise due to modeling errors; it is

undesirable for the patches to be connected through such noisy

curves. To filter out such cases, if
|Ck |

(|Pi |+ |Pj |)
1/2 < ϵnoise , we omit

the dual edges de(Pi , Pj ,Ck ,±). We set ϵnoise = 0.03 empirically.

Note that the visual regularity stands for a general notion of

binary relationship between patches; as a result, other meaningful

measurements like user preference or learned rules from annotated

datasets can be used as well, which we leave for future work.

5.2 Manifold mesh reconstruction as an ILP
Let [xi1,xi2, ...] be the indicator vector for selecting one configu-

ration from all enumerated choices for a singular curve Ci ; thus
each xi j corresponds to a set of dual edges. Further, a singular curve
Cj ⊂ ∂Pi if for all edges e ∈ Cj , there is e ∈ ∂Pi (Sec. 3). Next we

ACM Trans. Graph., Vol. 38, No. 6, Article 158. Publication date: November 2019.

158:8 • Lei Chu, Hao Pan, Yang Liu, and Wenping Wang

present the constraints and the objective function for modeling the

manifold mesh reconstruction problem as an ILP.

Selection constraint. We require a single configuration is selected

for each singular curve, which means∑
j
xi j = 1, ∀i (1a)

xi j ∈ {0, 1}, ∀i, j (1b)

Orientation constraint. Orientation consistency requires that the

selected orientation of a patch Pi is compatible with the selected

configurations of all its boundary singular curves. Thus for the

positive and negative orientations respectively, we have a chain of

equations iterating over the boundary singular curves:∑
x jl→+Pi

x jl =
∑

xkm→+Pi

xkm ,∑
x jn→−Pi

x jn =
∑

xkp→−Pi

xkp , (2)

∀Cj ,Ck ⊂ ∂Pi

where x → +Pi means that the dual edges corresponding to x
induce positive orientation of Pi , while x → −Pi induces negative
(flipped) orientation. Note that {x jl }∩{x jn } = � because we discard

self-conflicting configurations during enumeration.

Objective function. The linear objective function consists of two

terms: the first term works on each patch, and measures the align-

ment of its orientation to visibility; the second term works on each

dual edge, and measures the visual regularity of the induced con-

nection. To be specific, we have

E(x) = ω1Eor i (x) + ω2Er eд(x). (3)

The first term contains two symmetric parts, for positive and nega-

tive orientations respectively:

Eor i (x) =
∑
Pi

E+or i (Pi ,x) + E
−
or i (Pi ,x)

=
1∑
|Pj |

∑
Pi

|Pi |S+(Pi)∑
Ck ⊂∂Pi 1

∑
Cj ⊂∂Pi

∑
x jk→+Pi

x jk

+
1∑
|Pj |

∑
Pi

|Pi |S−(Pi)∑
Ck ⊂∂Pi 1

∑
Cj ⊂∂Pi

∑
x jl→−Pi

x jl ,

where S±(Pi) give the likelihood of patch orientation being correct

or flipped (Sec. 4.1). Intuitively, to maximize Eor i we should select

the configurations that induce all the patch orientations with larger

likelihood. Numerically, Eor i ∈ [0, 1], because: 1)
∑
x jk→+Pi x jk ∈

{0, 1} due to (1a) and (1b), 2) the normalizations by curve numbers

and patch areas, and 3) 0 ≤ S±(Pi) ≤ 1.

The second term simply sums up the visual regularity of all dual

edges:

Er eд(x) =
∑
de

Er eд(de,x) =
1∑
|de∗ |

∑
de

|de∗ |Sr eд(de)
∑

x→de

x ,

where de∗ denotes the primal singular curve of the dual edge, and

x → de means that the configuration x contains the dual edge

de . Note that due to the non-negativity of regularity scores Sr eд ,

by maximizing Er eд we would select configurations that try to

connect all patches as much as possible, and prioritize visually more

regular connections over less regular ones. Numerically, Er eд ∈
[0, 1], similarly because of the mutual exclusivity of configurations

containing a dual edge, the normalization by singular curve lengths,

and that 0 ≤ Sr eд ≤ 1.

Since Eor i and Er eд are numerically comparable, in all our ex-

periments, we have used ω1 = 5,ω2 = 1 to put an emphasis on the

visibility alignment of patches.

The ILP problem. We formulate the global manifold mesh recon-

struction problem as an integer linear programming:

max

x
E(x)

s.t. (1), (2)

The problem is guaranteed to have feasible solutions, because the

trivial solution of disconnecting all manifold patches from singular

curves always exists.

An ILP problem is NP-complete and therefore hard to solve for its

optimal solution within a tractable computational budget. However,

approximate solutions of high quality for many practical ILP prob-

lems can be found efficiently using carefully designed algorithms.

Next we present such an algorithm for solving the manifold mesh re-

construction problem that exploits the duality of patch orientations

and connections.

5.3 Solving the ILP
We proceed in two steps:

(1) The ILP is relaxed into a linear programming (LP), by replac-

ing (1b) with 0 ≤ xi j ≤ 1. Let x∗r be its optimal solution.

(2) Extract the integer solution x∗b from x∗r , using an efficient

rounding scheme that first determines patch orientations and

then selects connections.

The LP problem can be efficiently solved by standard solvers; we

have usedMOSEK [ApS 2018] in our experiments.We present details

of the integer solution rounding method next.

Converting x∗r to integer solutions is not straightforward, because
of the constraints (1a) and (2). For example, a naive rounding of

selecting the maximum xi j to be 1 for each singular curveCi would
easily violate the orientation constraints. To circumvent this dif-

ficulty, we first round the orientation constraints by selecting for

each patch the most likely orientation given the current connection

probabilities x∗r using a graph labeling procedure, and then choose

the maximum from configurations that are compatible with the

selected patch orientations.

The patch orientation selection can be viewed as a binary graph

labeling problem on G = ({Pi }, {de}). In particular, we find the

orientation oi ∈ {+,−} for Pi , such that the objective function

adapted from (3) is maximized:

Eдraph (o) = ω1

∑
i
Eд_or i (Pi ,oi) + ω2

∑
i≤j

Eд_r eд(Pi , Pj ,oi ,oj),

where the unary term is

Eд_or i (Pi ,oi) =

{
E+or i (Pi ,x

∗
r), if oi = +

E−or i (Pi ,x
∗
r), if oi = −

ACM Trans. Graph., Vol. 38, No. 6, Article 158. Publication date: November 2019.

Repairing Man-Made Meshes via Visual Driven Global Optimization with Minimum Intrusion • 158:9

and the binary term is

Eд_r eд(Pi , Pj ,oi ,oj) =
∑

de→oi ,oj

Er eд(de,x
∗
r),

where de → oi ,oj means that the dual edge de implies the orien-

tations oi ,oj for the patches Pi , Pj respectively. Notice that for the
special case of i = j, meaning the patch connects to itself through

singular curves, the binary term degenerates to a unary term.

Essentially, Eдraph is a rearrangement of the terms in E(x∗r),
depending on the discrete values of the patch orientations. Thus

the orientations selected by maximizing Eдraph are the optimal

ones, given the optimal continuous connectivity likelihoods x∗r .
After obtaining the optimal orientations o∗, to determine the fi-

nal connections, we only need to choose the configuration with

max{x∗r,i j |x
∗
r,i j → o∗k ,∀Pk ∈ Adj(Ci)} for each curveCi . As a result

of this two-step process, the configurations selected are guaranteed

to satisfy the constraints and therefore feasible.

The binary graph labeling problem can be solved efficiently with

polynomial complexity algorithms under mild regularity condi-

tions [Kolmogorov and Zabin 2004]. In our experiments, we have

used [Kolmogorov 2006] to solve it.

In Sec. 7.3 we compare the two-step global optimization method

with the alternative Branch-and-Bound and greedy solvers, and

show empirical evidence of its effectiveness.

6 POSTPROCESSING

6.1 Extracting mesh from the solution
The solved optimal configurations encode the orientations of all

faces and the regular adjacency relationships for faces that are

incident to singular edges. After reorienting the faces as specified,

we are only one step away from having the final well-connected

manifold mesh. In this section we present the procedure to extract

the output manifold mesh based on the solved adjacencies. The

output manifoldness is proved here and empirically tested in Sec. 7.1.

We first apply a simple postprocessing to ensure successful mani-

fold mesh extraction. We identify the singular curves which contain

only single edges. For each single edge, we split the edge in the mid-

dle by inserting a new vertex; the adjacent faces incident to the edge

are split into two as well. The connection solved for the single-edge

curve is applied for the two newly created singular edges. The effect

of this process is illustrated in Figs. 8 and 9, where the resulting

edges of input one-edge singular curves may not have been encoded

by their endpoint vertices if the singular curves were not split. This

construction will also be utilized in the proof of result manifoldness

in the following discussion.

The procedure to extract the manifold mesh is mainly about

duplicating each singular vertex such that every manifold subgroup

of its incident faces has a separate copy, thus satisfying the definition

of manifoldness (Sec. 3). LetM = (V , F) be the input mesh processed

thus far, and M ′ = (V ′, F ′) be the output manifold mesh to be

extracted. We use the binary relation ∼E=
{
{ fi , fj }

}
to denote all

pairs of faces fi , fj ∈ F that are adjacent because either their shared

edge is regular in the input mesh or they are dictated so by the

solved configuration; if a face fi is adjacent to no face through its

k-th edge, we abuse notation slightly and store { fi , (k,null)} in ∼E .

(a) (b) (c)

Fig. 7. An unorientable Möbius strip. From left to right: (a) the input Möbius
strip with faces randomly flipped (front in blue, back in purple), (b) result
after visual processing that tries to reorient the faces into larger patches
with coherent orientations, and (c) result after global manifold mesh recon-
struction which further flips certain small patches to obtain a single oriented
surface with a boundary curve separating the opposite facing triangles.

For a vertex v ∈ V and its star of incident faces v∗, let fi , fj ∈ v
∗

be two faces. We say fi ∼ fj if there exists a sequence of faces

fi , · · · , fj ∈ v∗ such that two consecutive faces in the sequence

are adjacent by ∼E ; the relation is an equivalence that partitions

v∗ into v∗/∼. We duplicate the vertex v into |v∗/∼ | copies, and
let faces in each equivalence class index their corresponding copy.

The extended vertex set and the faces with possibly updated vertex

references constitute the final output mesh.

Theorem. The extracted mesh is manifold.

Proof. See Appendix A.2. �

6.2 Optional hidden pieces removal
By solving the manifold mesh reconstruction problem, we are able

to obtain large connected pieces from the scattered input patches,

which generally correspond to meaningful decomposition or seg-

mentation of the 3D models. However, for two components that

are placed in intersecting positions, they may still be disconnected

after the optimization, due to the fact that there are hidden marginal

pieces that prevent the connection of the two major components.

Depending on applications, we may regard the hidden marginal

pieces as desirable or extraneous; if they are deemed irrelevant, a

simple fix is to remove the hidden patches and their incident dual

edges from the graph G = ({Pi }, {de}), on which the optimization

is then applied. As discussed in Sec. 4.1, we define a patch as hidden

if its visible pixels are less than ϵpix . For example, in Fig. 3 the

removal of hidden pieces (ē) allows the attachments to be further

connected with the bag handles, resulting in a more concise model.

More examples without and with hidden pieces removed are shown

in Figs. 1, 11, 13, 16 and 21.

7 RESULTS AND DISCUSSION
This section presents the results of processing meshes of diverse

complexities with the proposed mesh repairing tool. We also analyze

the computational performance of each step, demonstrating high

efficiency of our novel ILP solver. Comparison with previous mesh

fixing methods is conducted to show that our tool better fits the

targeted man-made meshes and complements existing approaches.

The sensitivity and impact of parameters are also discussed.

ACM Trans. Graph., Vol. 38, No. 6, Article 158. Publication date: November 2019.

158:10 • Lei Chu, Hao Pan, Yang Liu, and Wenping Wang

(a) (b) (c) (d)

Fig. 8. Double cubes touching at a common edge, as shown in (a). Under our
energy formulation, there are two equally optimal manifold solutions, (b)
and (c). We slightly translated the two separate cubes in (b), and perturbed
the geometrically coinciding vertices in (c) to better visualize the topology.
(d) is a transparent rendering of (c) to show the connections clearly. Note that
the one-edge singular curve in (a) is split by our post-processing (Sec. 6.1).

(a) (b) (c)

Fig. 9. Three prisms touching at three common edges. (a) the input nonman-
ifold mesh. (b) the result manifold mesh, with coinciding vertices slightly
perturbed to better show the topology. (c) is (b) rendered in transparency to
show the connections clearly. Note the three one-edge singular curves have
been split by our post-processing (Sec. 6.1).

7.1 Validation
In this section we validate the presented algorithm with challenging

synthetic cases. As shown in Fig. 7, our algorithm can handle an

unorientable Möbius strip without problem. Given an input Möbius

strip whose faces have been randomly flipped, the first step of our

pipeline reorients the faces into improved coherency and merges

them into larger patches (Fig. 7(b)), and the second step of global

optimization further flips the three isolated small patches and con-

nects all patches into a single surface. The final patch is oriented

manifold as it differs from a Möbius strip with a boundary curve

that cuts across the strip (Fig. 7(c)).

For two cubes touching at a common singular edge shown in

Fig. 8, our manifold mesh reconstruction through global optimiza-

tion actually has two equally optimal solutions, as they have the

same orientation alignments and connection regularity scores (Eq. 3).

One solution separates the two cubes, shown in Fig. 8(b). The other

solution turns the shared edge into a tunnel, shown in Fig. 8(c) and

(d) where the geometrically coinciding vertices on the tunnel edges

are perturbed manually to show the structure. Note these vertices

are created by the postprocessing (Sec. 6.1); without them the tunnel

edges would not be distinguishable by endpoint vertices.

A similar case to the two cubes is shown in Fig. 9, where three

prisms touch each other through singular edges. There is only one

optimal solution for this case, with the three singular edges all

turned into tunnels. Again the vertices on tunnel edges are per-

turbed in Fig. 9(b) and (c) to show the structure. All these test cases

demonstrate the guaranteed output manifoldness of our algorithm.

7.2 Processing large 3D datasets
The proposed mesh repair method is applied on significant portions

of the popular large scale datasets of ModelNet [Wu et al. 2015] and

ShapeNet [Chang et al. 2015]. In particular, by setting a maximum

2.5K

1.5K

0
2.5K

1.5K

0
40 1K >5K 40 1K >5K 40 1K >5K

Input Preprocessed

VP Opt Opt:HR

Fig. 10. Counting the number of patches on 10k processed meshes from
ModelNet and ShapeNet. The horizontal axis denotes the number of surface
patches and is piecewise linear. VP means the results after our visual driven
processing step, Opt means results after global optimization, and Opt:HR
means results when hidden patches are removed. Clearly the surface patches
are greatly reduced by our tool, signifying more structured result meshes.

running time limit of 10 hours per model, our fully automatic tool

has processed 4891 out of 4899 models from ModelNet10 (the other

8 models shown in supplemental material exceeded time limit),

and 5536 out of 55341 models from ShapeNetCore, thus around

10k in total. Our approach is robust enough to work on all these

inputs without failures. However, for complex models with large

amounts of surface patches, the running time for the redundancy

removal operation (Sec. 4.2) of the visual driven processing step can

be quite long; see Sec. 7.3 for more discussions. The models before

and after processing are counted for their numbers of manifold

patches, which is summarized in Fig. 10. Example models are shown

in Figs. 1, 11, 12, 13, 15 and 21; several mesh files can be found in

the supplemental material.

The benefits of repairing the meshes with our method can be

shown in immediate downstream applications. For example, on the

large connected manifold patches, we can safely apply remeshing

tools that work by iterated edge split/collapse and vertex smoothing,

while also preserving sharp features of the input models. As shown

in Fig. 12, we detect the feature edges of the input models by using

a simple threshold on the dihedral angles, and apply the anisotropic

remeshing tool by [Fu et al. 2014] on our fixed meshes to obtain

these high quality and feature preserving meshes. On the other

hand, remeshing directly on the input meshes with either scattered

triangles or nonmanifold edges can be quite challenging. Many

advanced downstream deep learning methods that require or benefit

from manifold meshes can then be applied on these meshes of high

quality, including [Maron et al. 2017; Masci et al. 2015; Poulenard

and Ovsjanikov 2018; Qi et al. 2017]. Manual labeling of semantic

parts requires manifold components as well [Mo et al. 2019].

As another example, due to the minimal intrusion nature of our

algorithm, the processed models naturally preserve the textures of

input models: for faces that exist in the input, the texture maps are

simply carried over; for the newly generated faces by resolution of

self-intersection and singular edge subdivision, their texture maps

are deduced from the texture coordinates of their embedding faces

in the input by barycentric interpolation. Figs. 3 (f), 13 show tex-

tured results. On these textured meshes with proper orientations

and no redundant faces, it is more robust to compute ray-triangle in-

tersection for ray tracing and other advanced rendering. In addition,

it is noted that only on the meaningfully connected components

ACM Trans. Graph., Vol. 38, No. 6, Article 158. Publication date: November 2019.

Repairing Man-Made Meshes via Visual Driven Global Optimization with Minimum Intrusion • 158:11

Fig. 11. More results by processing ModelNet and ShapeNet datasets. The left side shows results without hidden patch removal, and the right side more
concise models with hidden patch removal.

Fig. 12. Remeshing on the repairedmodels. For each pair, the left is the input
model, and the right is our fixed model with each patch further remeshed
by local operations like edge flipping and vertex smoothing [Fu et al. 2014].
Hidden patches are not removed here. Note that sharp curves on the input
models are detected as feature lines and well preserved by remeshing.

Fig. 13. Texturing the repaired meshes. Top row shows the repaired meshes
that have large manifold meshes with all sorts of delicate structures pre-
served. Bottom row are the rendered meshes with textures copied from input
meshes. Note how the textures are well transferred. The left two meshes
are results with hidden pieces removed, and the right one without.

can new texture maps be properly applied for advanced appearance

synthesis applications as demonstrated in [Park et al. 2018].

7.3 Computational performance
In this section, we focus on the computational performances of

the proposed pipeline, by measuring on randomly selected models

from ModelNet and ShapeNet. We also evaluate the efficiency of

our approximate global optimization solver by comparing with

alternative methods. All the evaluations are done on a desktop PC

with Intel i5-3570 processor and integrated GPU.

7.3.1 Runtime cost. The simple preprocessing is fast, taking sec-

onds even for large models. The time used by visual driven pro-

cessing is positively related to the number of manifold patches; in

particular, the first and third operations (Sec. 4) are efficient non-

repeating passes over the basic patches, while the patch removal

operation is an iterative process that has no upper bound on its

running time. Therefore in Fig. 14, we sort a set of 30 test meshes ac-

cording to the number of patches generated after preprocessing and

self-intersection resolution, and plot their time costs in the visual

processing step. We can see that this step is indeed time consuming:

for very complex models it can take hours. Two of the most complex

models are shown in Fig. 15: we see that in addition to the patch

orientations being adjusted, a large number of cluttered and re-

dundant patches have been removed during the simplification step,

while the delicate but meaningful patches are well preserved and

finally connected into clean components that strongly correspond

to semantics.

For the 8 models of ModelNet that are not finished within 10

hours, we notice even larger numbers of patches and more con-

volved spatial relations among them (see Fig. 16). The overly clut-

tered structures with these cases, however, suggest that we may

take an aggressive approach of simplification, i.e., we can apply the

hidden patch removal (Sec. 6.2) early before the iterated removal

operation in Alg. 2, so that a large number of these hidden and clut-

tered patches can be quickly removed. Indeed, using this aggressive

strategy, all the eight models can be finished within 50 minutes. As

shown in Fig. 16 (c) (d) for the chair model, the result is a clean

mesh which may have lost some subtle inner structures alongside

the cluttered redundancies.

The global optimization step is generally very efficient, taking

around one second for the most complex models. As shown in

ACM Trans. Graph., Vol. 38, No. 6, Article 158. Publication date: November 2019.

158:12 • Lei Chu, Hao Pan, Yang Liu, and Wenping Wang

-1

0

1

2

3

Fig. 14. Runtime plot of the visual driven processing step. The horizontal
axis marks 30 test cases sorted by the number of patches. The vertical axis
is the logarithm of minutes used. Test samples of various complexity are
shown on the left: for themore detailedmodels, a large number of redundant
patches are detected and removed during simplification (see Fig. 15).

Fig. 15. Two test models with long visual processing running time. From
left to right: the input mesh, the mesh after visual processing, the redun-
dant pieces removed by simplification, and the final optimized result. Face
backside is rendered in purple. After the processing, the number of patches
have been reduced from 6618 to 323 and 3802 to 715 for the car and truck
models, taking 407 and 51 minutes, respectively.

(a) (b) (c) (d)

Fig. 16. The timed-out chair model has very fragmented patches, but is
finished within 3 minutes using the aggressive simplification strategy that
removes hidden patches first. (a) and (b) show the input mesh and its cutoff
view, where highlighted is a small region which contains more than 84k
cluttered patches (shown in different colors) after self-intersection resolution.
(c) and (d) show the result and cutoff view by using aggressive simplification.

Fig. 17 (a), the time cost for global optimization is mainly influenced

by the number of variables.

7.3.2 Efficiency of the approximate ILP solver. We evaluate our two-

step global solver for reconstructing manifold meshes from scattered

patches (Sec. 5.3) and compare it against alternative methods, i.e. the

global optimal solvers (Branch-and-Bound (BnB)) and the greedy

solver (Appendix A.3), extensively on 1k test models. We have con-

sidered two variants of the BnB solver, one with our rounding that

guarantees solution feasibility and the other with naive maximal

rounding. Thus the “BnB+our rounding” solver gives the upper

0

-2

-1.5

-1

-0.5

0

1

10

100

300

5.50.5 5.50.5
(a) Time (b) Energy

Fig. 17. Time and energy plot of four optimization algorithms for solving
the manifold mesh reconstruction problem. The horizontal axes give the log
scale of variable numbers for the test cases. In the time plot (a), the vertical
axis is piecewise linear with second as the unit; a limit of 300 seconds is
imposed. The energy plot (b) shows energy differences (scaled by ×100)
from the upper bounds obtained by “BnB+our round”; the data points for
“BnB+max round” on horizontal axis imply failure to find feasible solutions.
In contrast, our solutions tightly approximate the upper bounds.

Table 1. The performance of four ILP solvers on representative test cases.
#var is the number of variables, E1/t1, E2/t2 and Eдr /tдr resp. give the
optimized energy and time cost (in seconds) of “BnB+our rounding”,
“BnB+maximal rounding” and the greedy solver. For the 946 and 983 samples,
BnB+maximal rounding fails to find feasible solutions within 300 seconds.

id #var Eour tour E1 t1 E2 t2 Eдr tдr
34 40 4.94548 0.02 4.94548 0.05 4.94548 0.06 4.92471 0.01

505 1004 5.07029 0.02 5.07029 0.55 5.07029 0.56 5.06554 0.02

692 2192 3.07301 0.07 3.07301 24.9 3.07301 37.9 3.06658 0.08

918 7888 3.51262 0.14 3.51262 53.1 3.51262 300 3.50518 1.38

946 10434 3.65282 0.15 3.65333 300 - 300 3.646 2.58

983 15164 2.71965 0.16 2.71987 300 - 300 2.71852 5.28

bound energy values for all four methods. Time costs and energy

differences from the upper bounds are plotted in Fig. 17.

Overall, our solver is capable of handling all test cases and find-

ing close-to-optimal solutions fast. This is in contrast to the global

optimal solvers whose time cost quickly grows as the variable num-

ber increases (Fig. 17(a)), and to the greedy solver which generally

finds less optimal solutions (Fig. 17(b)) and takes longer time for

moderately complex models. These are also confirmed by numeric

data (Table 1) and visualization (Fig. 18) for concrete examples. Ad-

ditionally, it is worth noting that compared to our rounding with

guaranteed feasibility, “BnB+maximal rounding” fails to find fea-

sible solutions for many big models (946 and 983 in Table 1 and

exceptional data points in Fig. 17(b)).

7.4 Comparison
We compare our approach with two types of previous methods: the

first type contains the global repair methods that rely on volumetric

intermediate representations, in particular, PolyMender [Ju 2004]

and TetWild [Hu et al. 2018]; the second type represents methods

that work directly with polygonal meshes, including MeshFix [At-

tene 2010] and outer hulls [Attene 2016]. Notice that as reviewed

before, these comparing methods do target differently than our

method, as they all assume that the input mesh bounds a valid solid

volume, which is however frequently not the case for meshes in

the popular datasets. Nonetheless, we try to compare with them

ACM Trans. Graph., Vol. 38, No. 6, Article 158. Publication date: November 2019.

Repairing Man-Made Meshes via Visual Driven Global Optimization with Minimum Intrusion • 158:13

BnB+our rounding Greedy Ours

Fig. 18. Result manifold components by different solvers without hidden
patch removal. The input of each test case is shown at upper left corner. The
components are rearranged manually to better show the structures. Both
BnB and our results are structurally regular and similar, while greedy solver
results are more scattered.

35%

15%

0
35%

15%

0
35%

15%

0
35%

15%

0

35%

15%

0
35%

15%

0

100%

50%

0

30 400 >5K 30 400 >5K 30 400 >5K

Input Preprocess

Ours:VP Ours:Opt Ours:Opt:HR

PolyMender PolyMender:Pre PolyMender:VP

TetWild TetWild:Pre TetWild:VP

MeshFix MeshFix:Pre MeshFix:VP

OuterHull OuterHull:Pre OuterHull:VP

OuterHull-E OuterHull-E:Pre OuterHull-E:VP

Fig. 19. The distributions of patch numbers for comparing mesh repair
methods. For our method, VP stands for results after visual processing, Opt
means after global optimization, HR further means the hidden pieces are
removed. For other methods, for each test case the method is applied to
the initial input, the preprocessed mesh and the visually processed mesh,
respectively. Note the horizontal axis is piecewise linear.

on processing a set of 1092 randomly selected models from Model-

Net and ShapeNet, to discuss the strengths and weaknesses of each

method. The distributions in terms of patch numbers and Hausdorff

distances from inputs are measured on the test set and shown in

Fig. 19 and Fig. 20: in general, the patch numbers are greatly re-

duced after our processing while the results remain very close to

the input meshes. Specific examples are further visualized in Fig. 21.

Overall, our method is shown to be more suitable for repairing

these meshes, as it robustly removes redundancies and conflicts and

50%

25%

0

50%

25%

0

50%

25%

0
100%

50%

0

2.5E-2 5E-2 >1.2E-12.5E-2 5E-2 >1.2E-1 2.5E-2 5E-2 >1.2E-1

50%

25%

0
50%

25%

0

Ours:VP Ours:Opt Ours:Opt:HR

PolyMender PolyMender:Pre PolyMender:VP

TetWild TetWild:Pre TetWild:VP

MeshFix MeshFix:Pre MeshFix:VP

OuterHull OuterHull:Pre OuterHull:VP

OuterHull-E OuterHull-E:Pre OuterHull-E:VP

Fig. 20. The Hausdorff distance distributions of result meshes from input
for comparing repair methods. See caption of Fig. 19 for explanation of
notations. Note the horizontal axis is piecewise linear.

recovers manifold meshes that preserve the input structures with

minimal intrusion. Next we compare with each method in detail.

With PolyMender [Ju 2004]. PolyMender takes a global repair

approach by scan converting the input mesh into a volumetric grid

representation first, and then sign the grid points consistently by

patching singular boundaries to obtain a solid, from which a dual

contouring surface mesh is finally extracted. The approach has the

advantage of being very robust and generic, as it can handle meshes

with many gaps and randomly flipped faces. On the other hand, an

intrinsic problem with the volumetric grid conversion is the loss of

original mesh structures and features.

For example, as shown in Fig. 21 (a1), there is strong aliasing

of sharp features at the airplane wing edges due to the regular

sampling by volumetric grids. In addition, because of limited grid

resolution, small scale or thin features that are critical may not

be properly captured by the volumetric representation, as shown

through the zoomed-in wing tips in (a1) that are severely distorted,

and the drawer handle rings in (a2) that are mostly lost.What’s more,

PolyMender fails to sign the volume properly to recover proper

surfaces for the front side of table in (a2), because there are multiple

layers of intricate inner structures that interfere with the signing

process. In contrast, our approach of working on the meshes directly

faithfully preserves all these important structures and features and

robustly handles complex structures. The difference is also shown in

the contrasting errors measured by Hausdorff distance from input

meshes between PolyMender’s results and ours (Fig. 20): our errors

are on average an order of magnitude smaller than theirs.

With TetWild [Hu et al. 2018]. TetWild is a robust tetrahedral

meshing method that can handle all kinds of input boundary meshes

and generate high quality and feature sensitive tetrahedral meshes

that conform to the boundary within a given threshold. From the

mesh repair perspective, TetWild can also be regarded as a global

ACM Trans. Graph., Vol. 38, No. 6, Article 158. Publication date: November 2019.

158:14 • Lei Chu, Hao Pan, Yang Liu, and Wenping Wang

(a1)

(a2)

(b1)

(b2)

(c1)

(c2)

(d1)

(d2)

Input Result on input Result on VP Our result Our result HR

w/o -E

w/ -E

w/o -E

w/ -E

Fig. 21. Comparison with other methods through examples. For meshes other than our results, front sides are rendered in blue and back sides in purple. (a)
compared with PolyMender [Ju 2004]; (b) with TetWild [Hu et al. 2018]; (c) with MeshFix [Attene 2010]; (d) with outer hulls by [Attene 2016], without and
with its dangling surface extrusion option (-E), where the insets show the dangling surfaces and cutaway views of result models, respectively. In each row,
from left to right, are the input mesh, the result of comparing method on the input, the result on the visually processed mesh by our first step, our result, and
our result with hidden pieces removed from input. Zoom in to see the structure differences, and refer to text for detailed analysis. The mesh models are
included in supplemental materials.

ACM Trans. Graph., Vol. 38, No. 6, Article 158. Publication date: November 2019.

Repairing Man-Made Meshes via Visual Driven Global Optimization with Minimum Intrusion • 158:15

repair method that uses the tetrahedral mesh as the intermediate rep-

resentation, fromwhich the boundary surface is extracted by signing

the tetrahedra using generalized winding numbers [Jacobson et al.

2013]. The advantage of TetWild is again its unconditional stability

in generating tetrahedral meshes from arbitrary input meshes. Yet

when used for repairing and extracting surface meshes, the signing

method relies heavily on the assumption that the surface should be

properly oriented and bound a valid solid, which is hardly the case

for many meshes in our targeted datasets.

Indeed, as shown in Fig. 21 (b1), since there are hidden duplicated

patches with flipped orientations in the input, TetWild cannot prop-

erly extract major components of the input. This problem is largely

reduced when TetWild is applied on the mesh processed by our

first step, as shown in (b1) third column, where the major problem

becomes the loss of features defined by open surfaces. Similarly for

the sofa in (b2), TetWild captures a small part when applied on the

original input, and recovers more on the processed mesh by our

first step. However, as shown in the inset cutoff view of the sofa

cushion, there are inner structures with random orientations that

still cause difficulty for its detection of solid, and lead to artifacts

in the extracted surface. In contrast, our algorithm processes these

open surfaces and inner structures robustly and recovers manifold

meshes that well capture the meaningful components. The differ-

ences are also confirmed by Hausdorff distances from input meshes:

as shown in Fig. 20, TetWild is very sensitive to the flipped orien-

tations and redundancies in the input meshes, and obtains much

improved results on our visually processed meshes. Notice that due

to the long running time of TetWild, we have managed to run it on

167 test samples out of the 1k without surface extraction failures, on

which the distributions of patch numbers and Hausdorff distances

are reported.

On the other hand, meshes generated by our

pipeline can be used as fixed boundary surfaces

for TetWild to work properly. For example, by

taking our fixed sofa (Fig. 21 (b2), fifth column)

as input, TetWild generates a remeshed model

with high mesh quality, as shown in inset.

With MeshFix [Attene 2010]. MeshFix is a comprehensive mesh

repair tool that tries to detect and repair holes and self intersections

of digitized meshes locally, to avoid unnecessary intrusions of the

input. As is acknowledged in [Attene 2010], the tool is not very

suitable for processing the man-made CAD models that we target,

because the artifacts with them are quite different from that of the

digitally acquired meshes. As shown in Fig. 21 (c), MeshFix cannot

handle the original inputs with pervasive redundancies and self-

intersections robustly; on the visually processed meshes, the results

are slightly improved. This is also reflected in the large Hausdorff

distances from input meshes shown in Fig. 20. In fact, for the 1k

test samples, MeshFix fails to finish properly on 658 input meshes,

38 preprocessed meshes, and 59 visually processed meshes; the

distributions of patch numbers and Hausdorff distances are reported

on the finished test samples.

With outer hulls [Attene 2016]. [Attene 2016] processes a mesh by

first resolving all its self-intersections and subdividing faces where

necessary, and then extracting the outer hull that consists of themost

exterior faces of the nonmanifold simplicial complex. To generate

the outer hull, a greedy algorithm starts from a seeding exterior face,

and grows along the manifold patches until reaching nonmanifold

edges, where the algorithm checks the fan of surrounding faces

incident to the edge and picks the next exterior face to be the one

closest to the previous exterior face. Through this process, both

the surfaces bounding solids and the outer sheets made of dangling

faces outside the solids are extracted.

While good for extracting printable solids, such a strategy relies

on the precision and quality of the input models, and does not fit

for the targeted man-made 3D datasets with diverse quality levels.

As shown in Fig. 21 (d) (without -E option), the extracted solids

frequently do not capture the major shape components which, de-

spite being visually quite meaningful, may simply not be closed.

Therefore, large parts of the input meshes are cast into the incom-

plete outer sheets (shown as insets). As a result, when we measure

the Hausdorff distances of the fixed solid surfaces from the input

meshes, we see large deviations shown in Fig. 20. Note that there

are 35 test cases whose solid outer hulls are simply empty, which

are excluded from computing the statistics. In comparison, although

our method directly works on meshes as well, due to the visually

guided approach and global optimization of all connections that do

not assume closed boundaries, our method robustly captures the

critical structures, large and small.

To preserve the dangling pieces into the final solid, [Attene 2016]

provides the option to extrude them into thin shells and apply the

above procedure again (denoted -E in Figs. 19, 20, 21). As shown

by the reduced Hausdorff distances in Fig. 20 and the examples in

Fig. 21 (d), the result shapes become more complete. On the other

hand, the result meshes have intricate and unpredictable changes

and complexities caused by the extrusion. For example, through

the cutoff views, we see that the back parts of the monitor model

now have double layers, while the single layer monitor base has

newly created subtle geometry. For the plane model as well, the

cutoff views show that some surface regions become double layers.

In addition, the missile propeller fans due to the relatively small

scale are significantly thickened and undesirably joined with the

bounding circles after extrusion. In contrast, our minimum intrusion

approach cleans the input structural defects without introducing

new artifacts. Note that with the extrusion option enabled, more

complicated self-intersections are created, therefore the outer hull

approach exceeds the 10-hour limit for 8 models from the input or

the preprocessed, and 21 models from the visually processed; the

statistics are reported on those finished properly.

7.5 Sensitivity and impact of parameters
The algorithm uses several parameters, mostly involved in the visual

driven processing step. The parameters can be classified into two

types: tunable parameters that may be adapted to different datasets

and repair targets, and other parameters that are derived from al-

gorithmic design and need no change. We have chosen the default

values of the tunable parameters based on 12 randomly selected

models, such that according to our subjective judgments the results

preserve both large structures and subtle details. In this section we

test the sensitivity of two tunable parameters, ϵvisual and cslmin ,

ACM Trans. Graph., Vol. 38, No. 6, Article 158. Publication date: November 2019.

158:16 • Lei Chu, Hao Pan, Yang Liu, and Wenping Wang

×0.1 ×0.32 ×1 ×3.2 ×10

Fig. 22. Patches removed (solid color) by visual processing with various
ϵv isual . The default value is in the middle, and scaled by specified fac-
tors to both directions. Larger values imply more patches are considered
insignificant, but the changes are small within a large range.

×0.01 ×0.1 ×1 ×10

Fig. 23. Patches removed (solid color) by visual processing with various
cslmin . It limits the maximum zoom-in factor for assessing visual signifi-
cance and affects the micro patches only. Larger values imply more micro
patches are removed, but the changes are marginal within a large range.

and discuss the impact of their variations. The other parameters are

discussed in the supplemental material.

Varying ϵvisual slightly changes the existence of the most redun-

dant structures, with major structures defining the object appear-

ances unaltered. We scaled ϵvisual by [0.1, 0.32, 3.2, 10] and tested

on the 30 models used for timing visual processing (Sec. 7.3.1);

the surface area changes from the default configuration results are

[3.2%, 2.3%, 4.1%, 8.3%] on average, i.e., the differences are generally

small even for large variations. Meanwhile, larger values of ϵvisual
make more structures considered insignificant and removed; so in

a sense, ϵvisual measures the persistence of structures in terms of

visual significance. Concrete examples are shown in Fig. 22.

Changing cslmin around its default value influences the occur-

rence of the micro patches only, as it specifies the maximum zoom-in

factor for visual significance computation (Sec. 4.2). Tested on the

same 30 models with cslmin scaled by [0.01, 0.1, 10], the result sur-

face area changes relative to default results are [0.07%, 0.07%, 0.9%]

on average, which are indeed marginal as the changes are about

micro patches. See Fig. 23 for examples.

8 CONCLUSION
We have presented a method designed for repairing man-made

meshes found in popular large scale 3D datasets. The method fully

exploits the mismatch between the high visual quality of the meshes

and their low structural quality, and uses a two-step pipeline that

works directly on the meshes to find the elementary manifold

patches that are not visually redundant and connect them into

large coherent manifold surfaces using global optimization. Com-

pared with previous mesh repair methods that generally assume

the meshes bound solid volumes, our approach is shown to work

robustly on the imprecise meshes that are frequently open or have

complex inner structures that interfere with solid volume detec-

tion. We have applied our method automatically on ModelNet and

ShapeNet, and obtained quality results more usable for downstream

processing. Our tool can be useful for data cleaning in the era of big

data and machine learning for advanced 3D applications.

Limitations and future work. By assuming open surfaces not bound-

ing solid volumes and working on them directly, our approach

cannot handle gaps between proximate components that may be

intended to be closed (see e.g. the separated components of chairs in

Fig. 21). This is in contrast to the previous global repair methods that

generally can close gaps by enforcing the volumetric assumption.

However, if the assumption indeed holds, our repair can still be used

as a preprocessing to improve the quality condition for subsequent

application of other global repair methods that handle gaps, as is

demonstrated in the TetWild case (Sec. 7.4).

The parameters and thresholds of our algorithm are selected

based on randomly sampled experiments on the available datasets,

and thus may not be the best choices for all test cases or other

datasets. In addition, while we believe the general pipeline of first

cleaning elementary patches through localized operations and then

combining the patches into coherent manifold meshes is suitable for

repairing and cleaning a wide range of man-made meshes with di-

verse problems, the specific operations and heuristic measurements

can be improved: for example, currently the scoring rules for patch

significance and regularity rely on pure geometry without consider-

ing textures, face groups and other semantic information [Mo et al.

2019], and thus can be limited. In the future, it is worthwhile to

consider learning the parameters, the scoring rules and even the

operations from annotated datasets with rich input features, in order

to be adaptive to dataset characteristics and semantics.

ACKNOWLEDGMENTS
We are grateful to the anonymous reviewers for suggestions, the

ShapeNet and ModelNet datasets, and Jianzhao Zhang for help with

rendering the models.

REFERENCES
2018. 3D Warehouse. https://3dwarehouse.sketchup.com. Accessed: 2018-12-14.

MOSEK ApS. 2018. The MOSEK Optimizer API for C. https://docs.mosek.com/8.1/capi/

api-reference.html

Marco Attene. 2010. A Lightweight Approach to Repairing Digitized Polygon Meshes.

Vis. Comput. 26, 11 (Nov. 2010), 14.
Marco Attene. 2014. Direct Repair of Self-intersecting Meshes. Graph. Models 76, 6

(Nov. 2014), 658–668.

Marco Attene. 2016. As-exact-as-possible repair of unprintable STL files. Rapid Proto-
typing Journal (05 2016).

Marco Attene. 2017. ImatiSTL - Fast and Reliable Mesh Processing with a Hybrid Kernel.

In LNCS on Transactions on Computational Science. Springer, 86–96.
Marco Attene, Marcel Campen, and Leif Kobbelt. 2013. Polygon Mesh Repairing: An

Application Perspective. ACM Comput. Surv. 45, 2, Article 15 (March 2013).

Gilbert Louis Bernstein and Chris Wojtan. 2013. Putting Holes in Holey Geometry:

Topology Change for Arbitrary Surfaces. ACM Trans. Graph. (SIGGRAPH) 32, 4,
Article 34 (July 2013), 12 pages.

CGAL. 2018. CGAL, Computational Geometry Algorithms Library.

https://www.cgal.org/.

Angel X. Chang, Thomas A. Funkhouser, Leonidas J. Guibas, Pat Hanrahan, Qi-Xing

Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong

Xiao, Li Yi, and Fisher Yu. 2015. ShapeNet: An Information-Rich 3DModel Repository.

CoRR abs/1512.03012 (2015). arXiv:1512.03012 http://arxiv.org/abs/1512.03012

Brian Curless and Marc Levoy. 1996. A Volumetric Method for Building Complex

Models from Range Images. In SIGGRAPH ’96. ACM.

H. Edelsbrunner and J. Harer. 2010. Computational Topology: An Introduction. American

Mathematical Society.

Xiao-Ming Fu, Yang Liu, John Snyder, and Baining Guo. 2014. Anisotropic Simplicial

Meshing Using Local Convex Functions. ACM Trans. Graph. (SIGGRAPH ASIA) 33,
6, Article 182 (Nov. 2014), 11 pages.

ACM Trans. Graph., Vol. 38, No. 6, Article 158. Publication date: November 2019.

https://3dwarehouse.sketchup.com
https://docs.mosek.com/8.1/capi/api-reference.html
https://docs.mosek.com/8.1/capi/api-reference.html
http://arxiv.org/abs/1512.03012
http://arxiv.org/abs/1512.03012

Repairing Man-Made Meshes via Visual Driven Global Optimization with Minimum Intrusion • 158:17

Ryo Furukawa, Tomoya Itano, AkihikoMorisaka, and Hiroshi Kawasaki. 2007. Improved

Space Carving Method for Merging and Interpolating Multiple Range Images Using

Information of Light Sources of Active Stereo. In ACCV. 206–216.
Michael Garland and Paul S. Heckbert. 1997. Surface Simplification Using Quadric

Error Metrics. In SIGGRAPH ’97. 209–216.
Yotam Gingold and Denis Zorin. 2008. Shading-based Surface Editing. ACM Trans.

Graph. (SIGGRAPH) 27, 3, Article 95 (Aug. 2008), 9 pages.
André Guéziec, Gabriel Taubin, Francis Lazarus, and Bill Horn. 2001. Cutting and

Stitching: Converting Sets of Polygons to Manifold Surfaces. IEEE Transactions on
Visualization and Computer Graphics 7, 2 (April 2001), 136–151.

Hugues Hoppe. 1996. Progressive Meshes. In SIGGRAPH ’96. ACM, 99–108.

Alexander Hornung and Leif Kobbelt. 2006. Robust Reconstruction of Watertight 3D

Models from Non-uniformly Sampled Point Clouds Without Normal Information.

In SGP.
Yixin Hu, Qingnan Zhou, Xifeng Gao, Alec Jacobson, Denis Zorin, and Daniele Panozzo.

2018. Tetrahedral Meshing in the Wild. ACM Trans. Graph. (SIGGRAPH) 37, 4,
Article 60 (July 2018).

Qixing Huang, Leonidas J. Guibas, and Niloy J. Mitra. 2014. Near-Regular Structure

Discovery Using Linear Programming. ACM Trans. Graph. 33, 3, Article 23 (June
2014), 17 pages.

Zhiyang Huang, Ming Zou, Nathan Carr, and Tao Ju. 2017. Topology-controlled Re-

construction of Multi-labelled Domains from Cross-sections. ACM Trans. Graph.
(SIGGRAPH) 36, 4, Article 76 (July 2017), 12 pages.

Alec Jacobson, Ladislav Kavan, and Olga Sorkine-Hornung. 2013. Robust Inside-Outside

Segmentation using GeneralizedWinding Numbers. ACM Trans. Graph. (SIGGRAPH)
32, 4 (2013), 33:1–33:12.

Alec Jacobson, Daniele Panozzo, et al. 2018. libigl: A simple C++ geometry processing

library. http://libigl.github.io/libigl/.

Tao Ju. 2004. Robust Repair of Polygonal Models. ACM Trans. Graph. (SIGGRAPH) 23,
3 (2004).

Tao Ju. 2009. Fixing Geometric Errors on Polygonal Models: A Survey. Journal of
Computer Science and Technology 24, 1 (01 Jan 2009).

Michael Kazhdan and Hugues Hoppe. 2013. Screened Poisson Surface Reconstruction.

ACM Trans. Graph. 32, 3, Article 29 (July 2013), 13 pages.

V. Kolmogorov. 2006. Convergent Tree-Reweighted Message Passing for Energy Mini-

mization. IEEE Transactions on Pattern Analysis and Machine Intelligence 28, 10 (Oct
2006).

V. Kolmogorov and R. Zabin. 2004. What energy functions can be minimized via graph

cuts? IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 2 (Feb 2004).
Roee Lazar, Nadav Dym, Yam Kushinsky, Zhiyang Huang, Tao Ju, and Yaron Lipman.

2018. Robust Optimization for Topological Surface Reconstruction. ACM Trans.
Graph. (SIGGRAPH) 37, 4, Article 46 (July 2018), 10 pages.

Peter Lindstrom and Greg Turk. 2000. Image-driven Simplification. ACM Trans. Graph.
19, 3 (July 2000), 204–241.

Hsueh-Ti Derek Liu, Michael Tao, and Alec Jacobson. 2018. Paparazzi: Surface Editing

by way of Multi-View Image Processing. ACM Trans. Graph. (SIGGRAPH ASIA)
(2018).

Haggai Maron, Meirav Galun, Noam Aigerman, Miri Trope, Nadav Dym, Ersin Yumer,

Vladimir G. Kim, and Yaron Lipman. 2017. Convolutional Neural Networks on

Surfaces via Seamless Toric Covers. ACM Trans. Graph. (SIGGRAPH) 36, 4, Article
71 (July 2017), 10 pages.

Jonathan Masci, Davide Boscaini, Michael M. Bronstein, and Pierre Vandergheynst.

2015. Geodesic Convolutional Neural Networks on Riemannian Manifolds. IEEE
ICCV (2015), 832–840.

Kaichun Mo, Shilin Zhu, Angel Chang, Li Yi, Subarna Tripathi, Leonidas Guibas, and

Hao Su. 2019. PartNet: A Large-scale Benchmark for Fine-grained and Hierarchical

Part-level 3D Object Understanding. (2019).

T. M. Murali and Thomas A. Funkhouser. 1997. Consistent Solid and Boundary Rep-

resentations from Arbitrary Polygonal Data. In 1997 Symposium on Interactive 3D
Graphics. 155–162.

Fakir S. Nooruddin and Greg Turk. 2003. Simplification and Repair of Polygonal Models

Using Volumetric Techniques. IEEE Transactions on Visualization and Computer
Graphics 9, 2 (April 2003).

Keunhong Park, Konstantinos Rematas, Ali Farhadi, and Steven Mm Seitz. 2018. Pho-

toShape: Photorealistic Materials for Large-Scale Shape Collections. ACM Trans.
Graph. (SIGGRAPH ASIA) 37, 6, Article 192 (Nov. 2018).

Adrien Poulenard and Maks Ovsjanikov. 2018. Multi-directional Geodesic Neural

Networks via Equivariant Convolution. ACM Trans. Graph. (SIGGRAPH ASIA) 37, 6,
Article 236 (Dec. 2018), 14 pages.

Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. 2017. PointNet++: Deep Hierarchical

Feature Learning on Point Sets in a Metric Space. In NIPS.
Jarek Rossignac and David Cardoze. 1999. Matchmaker: Manifold BReps for Non-

manifold R-sets. In Proceedings of the Fifth ACM Symposium on Solid Modeling and
Applications (SMA ’99). ACM, 31–41.

Thomas Windheuser, Ulrich Schlickewei, Frank R. Schmidt, and Daniel Cremers. 2011.

Large-Scale Integer Linear Programming for Orientation Preserving 3D Shape

Matching. Computer Graphics Forum (2011).

Zhirong Wu, S. Song, A. Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and J. Xiao.

2015. 3D ShapeNets: A deep representation for volumetric shapes. In IEEE CVPR.
Eugene Zhang and Greg Turk. 2002. Visibility-guided Simplification. In Proceedings of

the Conference on Visualization ’02 (VIS ’02). IEEE Computer Society, 8.

Qingnan Zhou, Eitan Grinspun, Denis Zorin, and Alec Jacobson. 2016. Mesh Arrange-

ments for Solid Geometry. ACM Trans. Graph. (SIGGRAPH) 35, 4 (2016).
Qingnan Zhou and Alec Jacobson. 2016. Thingi10K: A Dataset of 10, 000 3D-Printing

Models. CoRR abs/1605.04797 (2016). arXiv:1605.04797 http://arxiv.org/abs/1605.

04797

Ming Zou, Michelle Holloway, Nathan Carr, and Tao Ju. 2015. Topology-constrained

Surface Reconstruction from Cross-sections. ACM Trans. Graph. (SIGGRAPH) 34, 4,
Article 128 (July 2015), 10 pages.

A APPENDIX

A.1 Singular curve construction

ei ej
fi0

fi1

fj0

fj1

v

A singular curve is made of consecutive

singular edges. The problem is to decide

whether two singular edges should be con-

nected into one curve. Suppose for two con-

secutive singular edges ei , ej sharing a com-

mon vertex v , each has a set of adjacent faces Fi = { fi0, fi1, ...}
and Fj = { fj0, fj1, ...} respectively (see inset for illustration). We

connect the two edges into a singular curve, if and only if the two

sets of faces have a one-to-one correspondence as defined next: for

two faces fi0, fj0 sharing a common vertex v , a correspondence

fi0 ∼v fj0 exists if and only if there is a path of faces sharing v
that connects fi0 and fj0 and does not cross a singular edge. Note

that the correspondence is purely combinatorial and robust against

geometrical degeneracies.

A.2 Proof of output manifoldness
The proof contains two parts. First, we show that there is a one-to-

one correspondence between edges in the output meshM ′ and the

solved face-pair adjacency relation ∼E . Second, we show that each

vertex inM ′ is regular under the adjacency relation induced by ∼E .

Denote the origin of vertex v ′ ∈ V ′ as pre(v ′) ∈ V which is

duplicated |pre(v ′)∗/∼ | times to create v ′ and others. Conversely,

denote the duplicated vertices of v as imд(v). Further note that

f ′i ∈ F
′
differs from fi ∈ F only by the updated references to the

newly created vertices if any. Therefore, we can pull back the binary

relation ∼E to F ′ as ∼′E , by { f
′
i , f
′
j } ∈∼

′
E iff { fi , fj } ∈∼E .

We show the map from ∼E (and thus ∼′E) to edges inM
′
is one-to-

one and onto. For a pair { fi , fj } ∈∼E , if their shared edge is regular

in the input mesh, the edge is preserved in the output. Otherwise

when the shared edge is singular, denote the edge as vlvm . Without

loss of generality, we assume vm is the vertex incident to another

singular edgevmvn that belongs to the same singular curve asvlvm ;

the existence ofvmvn is guaranteed by our postprocessing (Sec. 6.1).

Due to the fan-shaped structure around the singular curve passing

through vm (A.1), the face pairs in ∼E that share the singular edge

vlvm (or vmvn) identify with the face equivalence classes v∗m/∼
induced by ∼E . Thus by the duplication procedure, for each face

pair sharing vlvm there is a unique corresponding edge with an

endpoint v ′m ∈ imд(vm) inM ′. This shows the one-to-one property.
For any edge v ′iv

′
j inM ′, it is adjacent to two faces f ′l , f

′
m that must

belong to a common equivalence class for pre(v ′i)
∗
(and pre(v ′j)

∗
),

ACM Trans. Graph., Vol. 38, No. 6, Article 158. Publication date: November 2019.

http://arxiv.org/abs/1605.04797
http://arxiv.org/abs/1605.04797
http://arxiv.org/abs/1605.04797

158:18 • Lei Chu, Hao Pan, Yang Liu, and Wenping Wang

which by definition corresponds to a pair in ∼E . This shows the

onto property.

The second part is rather straightforward. By definition (Sec. 6.1),

for each vertex v ′ in the output mesh, it has a star of faces v ′∗

such that for each face f ′ ∈ v ′∗, its adjacent face through an edge

incident to v ′ is unique and given by ∼′E , and for every two faces

f ′i , f
′
j ∈ v

′∗
, they are connected by a path f ′i , · · · , f

′
j ∈ v

′∗
such

that two consecutive faces are adjacent by ∼′E . Thus by treating each

face f ′ ∈ v ′∗ as a node, and linking two nodes f ′i , f
′
j ∈ v

′∗
if they

are adjacent through ∼′E , we obtain a single connected graph where

each node has degree at most two, i.e. a cycle or chain. Because in

the first part we have identified the edges ofM ′ with ∼′E , the output
mesh is manifold.

A.3 Branch-and-Bound and greedy solvers

Algorithm 3: Branch and Bound

Input: the ILP problem

Output: the global optimal solution x∗

UB = +∞, conf = 0#curves ,x
∗ = NaN , list = {conf };

while list isn’t empty do
conf = list.pop();

solve relaxed LP while fixing configurations specified in

conf to obtain x ;

LB = −E(x);

x̄ = round(x);

if (x̄ is feasible) and (−E(x̄) < UB) then
UB = −E(x̄);

x∗ = x̄ ;

end
if LB ≥ UB then

do nothing;

else
find curve Ci for which xi has maximal entropy

−
∑
j xi j logxi j ;

for j ← 1 to #Config(Ci) do
conf [i] = j;

list.push(conf);

end
end

end

The Branch-and-Bound algorithm is an approach for finding glob-

ally optimal solutions of integer programmings by pruning the

search space. We follow [Lazar et al. 2018] and design the BnB algo-

rithm shown in Alg. 3 for solving the manifold mesh reconstruction

ILP problem. The variable conf is a vector of size equal to the num-

ber of singular curves, and indicates the selected configuration for

each singular curve. The rounding to integer solution can be the

naive maximal rounding, or our two-step rounding using graph

labeling; when our rounding scheme is used, x̄ is always feasible.

The greedy solver summarized in Alg. 4 iterates over the sin-

gular curves, and in each iteration searches among all remaining

candidate configurations and selects the feasible one with maxi-

mal objective function value. While the greedy solver always finds

feasible solutions, the solutions are mostly suboptimal because of

the nontrivial patch orientation constraint (2) (Sec. 5.2). Intuitively,

the greedy selection of configurations may fix suboptimal patch

orientations that lead to difficulties for later junctions, while our

global optimization achieves better coordination.

Algorithm 4: Greedy solver

Input: the ILP problem

Output: the greedy solution x
remain = {Ci }, visited = {};

while remain isn’t empty do
i∗, j∗ =

arg maxi, j {E(xi j)|Ci ∈ remain, 1 ≤ j ≤ #Config(Ci),

xi j satisfy (2) against visited };

remain.remove(Ci∗), visited.add(Ci∗);

xi∗ j∗ = 1, xi∗ j,j∗ = 0;

end

Table 2. Summary of notations.

Notation Summary description

M = (V , F) mesh with vertices V and faces F
vi ∈ V mesh vertex

fi = (vi0,vi1,vi2) ∈ F mesh face

ei = {vi0,vi1} mesh edge

v∗ ⊂ F the faces adjacent to vertex v
P = { fi ∈ F } a mesh patch

∂P boundary curves of patch P
vi ∈ R3

the 3D coordinates of vi

| · |
length/area of a geometric object,

cardinality of a discrete set

S±(Pi) ∈ [0, 1]
likelihood of Pi oriented along(+)

/against(−) visibility

VS(Pi) ∈ [0, 1] visual significance score

ϵvisual > 0 threshold for removing redundant patches

Adj(C) patches adjacent to a singular curve C

de(Pj , Pk ,Ci ,o)
dual edge connecting Pj , Pk through

Ci with Pj ’s orientation specified by o
G = ({Pi }, {de}) graph of patches and connections

Sr eд(de) ∈ [0, 1] connection regularity for a dual edge

[xi1,xi2, . . .] indicator vector for configurations

x → ±P
configuration x induces positive(+)

/negative(−) orientation of P
x → de configuration x contains dual edge de

Eor i ∈ [0, 1] energy for orientation alignment

Er eд ∈ [0, 1] energy for connection regularity

ω1,ω2 weights resp. for Eor i ,Er eд
∼E⊂ F × F the face pairs encoded by solution

fi ∼ fj face equivalence induced by ∼E

ACM Trans. Graph., Vol. 38, No. 6, Article 158. Publication date: November 2019.

	Abstract
	1 Introduction
	2 Related work
	3 Method overview
	4 Visual driven processing
	4.1 Manifold patch detection, orientation and merging
	4.2 Visual significance scoring and iterated patch removal
	4.3 Self-intersection resolution

	5 Manifold mesh reconstruction through global optimization
	5.1 Enumerating and measuring the connections
	5.2 Manifold mesh reconstruction as an ILP
	5.3 Solving the ILP

	6 Postprocessing
	6.1 Extracting mesh from the solution
	6.2 Optional hidden pieces removal

	7 Results and discussion
	7.1 Validation
	7.2 Processing large 3D datasets
	7.3 Computational performance
	7.4 Comparison
	7.5 Sensitivity and impact of parameters

	8 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Singular curve construction
	A.2 Proof of output manifoldness
	A.3 Branch-and-Bound and greedy solvers

