Supplementary material for paper "Robust Modeling of Constant Mean Curvature Surfaces"

Hao Pan

Derivation of the gradient of the extended CVT (ECVT) energy in Eq. 10

Given a facet with three vertices z_{1}, z_{2}, z_{3} as seed points, the ECVT energy on this facet is given by

$$
F\left(z_{1}, z_{2}, z_{3}\right)=N \sum_{i=1}^{3} \int_{V_{i}}\left\|y-z_{i}\right\|^{2} d \sigma
$$

where N is the number of vertices of the mesh, V_{i} the Voronoi cell of z_{i} on this facet. For the convenience of discussion, we may omit the coefficient N in the following derivation because it is a constant.

Now we want to find the gradient $\frac{\partial F}{\partial z_{1}}$. This facet is in 3D Euclidean space. If we move z_{1} along the normal of this facet for an infinitely small distance, the energy will not change at all. So we know that the gradient vector is on the plane of the facet. Now we could put this problem in a 2D setting knowing that the gradient will be the same as in 3D setting. The 2D setting means that the three vertices are on 2 D plane. z_{1} moves on the 2 D plane.

Next we follow a similar approach which is used in [Du et al., 1999] to derive the gradient of standard CVT. We rewrite the energy as $F\left(z_{1}\right)=H\left(z_{1}, \Delta\right)$, where H is a function that maps the point z_{1} and the triangle Δ to the energy of CVT. The triangle is a variable that depends on z_{1}. We differentiate H over z_{1}.

$$
\frac{d H}{d z_{1}}=\frac{\partial H}{\partial z_{1}}+\frac{\partial H}{\partial \Delta} \frac{\partial \Delta}{\partial z_{1}}
$$

Figure 1: The Voronoi cells on a triangle from which ECVT energy is defined.

Figure 2: A perturb of the triangle vertex.

The first term $\frac{\partial H}{\partial z_{1}}$ means the variance of H when the triangle is fixed and only the seed point z_{1} changes. It is simply the standard CVT gradient:

$$
\frac{\partial H}{\partial z_{1}}=2 m_{1}\left(z_{1}-c_{1}\right)
$$

The second term means the variance of H when the triangle changes and the three seed points are fixed. Furthermore, only the vertex that coincides with z_{1} could change. Suppose this vertex is denoted as p. Then this term is equal to $\frac{\partial H}{\partial p} \frac{\partial p}{\partial z_{1}}$ and $\frac{\partial p}{\partial z_{1}}=I$. So we need to find out $\frac{\partial H}{\partial p}$.

We find $\frac{\partial H}{\partial p}$ by computing ΔH when there is a Δp. Fig. 2 shows the scenario. We could see that only the two edges $p z_{2}$ and $p z_{3}$ produce changes of energy H when p is perturbed a bit. To be more specific, the perturbation of $p z_{2}$ produces ΔH_{12} for the energy defined over Voronoi region of z_{1}, and produces ΔH_{21} for the energy over Voronoi region of z_{2}. Similarly, $p z_{3}$ leads to ΔH_{13} for z_{1}, and ΔH_{31} for z_{3}. The four energy differences are defined below:

$$
\Delta H_{12}=\int_{\frac{z_{1}+z_{2}}{2}}^{z_{1}}\left\|y-z_{1}\right\|^{2}\left(1+\Delta p \cdot \frac{z_{1}-z_{2}}{\left\|z_{1}-z_{2}\right\|}\right) d y \frac{\left\|y-z_{2}\right\|}{\left\|z_{1}-z_{2}\right\|}\left(\Delta p \cdot n_{12}\right)
$$

where n_{12} is the unit normal vector orthogonal to $z_{1} z_{2}$. The integrand means that for each small line segment on the edge $z_{2} z_{1}$, it expands to a small rectangle when there is a Δp. The value $\left\|y-z_{1}\right\|^{2}$ is assumed not to vary on such a small patch. And the area of the rectangle is $\left(1+\Delta p \cdot \frac{z_{1}-z_{2}}{\left\|z_{1}-z_{2}\right\|}\right) d y \frac{\left\|y-z_{2}\right\|}{\left\|z_{1}-z_{2}\right\|}\left(\Delta p \cdot n_{12}\right)$. The first part is length of the segment after expansion. The second part is the orthogonal edge length. For ΔH_{12} the interval would be from $\frac{z_{1}+z_{2}}{2}$ to z_{1}. Similarly, the other three energy differences are:

$$
\begin{aligned}
& \Delta H_{13}=\int_{\frac{z_{1}+z_{3}}{2}}^{z_{1}}\left\|y-z_{1}\right\|^{2}\left(1+\Delta p \cdot \frac{z_{1}-z_{3}}{\left\|z_{1}-z_{3}\right\|}\right) d y \frac{\left\|y-z_{3}\right\|}{\left\|z_{1}-z_{3}\right\|}\left(\Delta p \cdot n_{13}\right) \\
& \Delta H_{21}=\int_{z_{2}}^{\frac{z_{1}+z_{2}}{2}}\left\|y-z_{2}\right\|^{2}\left(1+\Delta p \cdot \frac{z_{1}-z_{2}}{\left\|z_{1}-z_{2}\right\|}\right) d y \frac{\left\|y-z_{2}\right\|}{\left\|z_{1}-z_{2}\right\|}\left(\Delta p \cdot n_{12}\right) \\
& \Delta H_{31}=\int_{z_{3}}^{\frac{z_{1}+z_{3}}{2}}\left\|y-z_{3}\right\|^{2}\left(1+\Delta p \cdot \frac{z_{1}-z_{3}}{\left\|z_{1}-z_{3}\right\|}\right) d y \frac{\left\|y-z_{3}\right\|}{\left\|z_{1}-z_{3}\right\|}\left(\Delta p \cdot n_{13}\right)
\end{aligned}
$$

Then we find that

$$
\lim _{\|\Delta p\| \rightarrow 0} \frac{\Delta H_{12}+\Delta H_{13}+\Delta H_{21}+\Delta H_{31}}{\Delta p}=\frac{1}{24}\left(\left\|z_{1}-z_{2}\right\|^{3} n_{12}+\left\|z_{1}-z_{3}\right\|^{3} n_{13}\right)
$$

So the gradient of CVT is

$$
\frac{d H}{d z_{1}}=2 m_{1}\left(z_{1}-c_{1}\right)+\frac{1}{24}\left(\left\|z_{1}-z_{2}\right\|^{3} n_{12}+\left\|z_{1}-z_{3}\right\|^{3} n_{13}\right)
$$

By summing up the gradients on the 1-ring neighborhood facets of a vertex, and putting back the coefficient N, we get the gradient equation of a vertex at Eq. 10.

References

[Du et al., 1999] Du, Q., Faber, V., and Gunzburger, M. (1999). Centroidal Voronoi tessellations: Applications and algorithms. SIAM Review, 41(4):637-676.

