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Derivation of the gradient of the extended CVT (ECVT)
energy in Eq. 10

Given a facet with three vertices z1, z2, z3 as seed points, the ECVT energy on this facet is given
by

F (z1, z2, z3) = N

3∑
i=1

∫
Vi

‖y − zi‖2dσ

where N is the number of vertices of the mesh, Vi the Voronoi cell of zi on this facet. For the
convenience of discussion, we may omit the coefficient N in the following derivation because it
is a constant.

Now we want to find the gradient ∂F
∂z1

. This facet is in 3D Euclidean space. If we move z1

along the normal of this facet for an infinitely small distance, the energy will not change at all.
So we know that the gradient vector is on the plane of the facet. Now we could put this problem
in a 2D setting knowing that the gradient will be the same as in 3D setting. The 2D setting
means that the three vertices are on 2D plane. z1 moves on the 2D plane.

Next we follow a similar approach which is used in [Du et al., 1999] to derive the gradient of
standard CVT. We rewrite the energy as F (z1) = H(z1,∆), where H is a function that maps
the point z1 and the triangle ∆ to the energy of CVT. The triangle is a variable that depends
on z1. We differentiate H over z1.

dH

dz1
=
∂H

∂z1
+
∂H

∂∆

∂∆

∂z1

Figure 1: The Voronoi cells on a triangle from which ECVT energy is defined.
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Figure 2: A perturb of the triangle vertex.

The first term ∂H
∂z1

means the variance of H when the triangle is fixed and only the seed point
z1 changes. It is simply the standard CVT gradient:

∂H

∂z1
= 2m1(z1 − c1)

The second term means the variance of H when the triangle changes and the three seed points
are fixed. Furthermore, only the vertex that coincides with z1 could change. Suppose this vertex
is denoted as p. Then this term is equal to ∂H

∂p
∂p
∂z1

and ∂p
∂z1

= I. So we need to find out ∂H
∂p .

We find ∂H
∂p by computing ∆H when there is a ∆p. Fig. 2 shows the scenario. We could see

that only the two edges pz2 and pz3 produce changes of energy H when p is perturbed a bit.
To be more specific, the perturbation of pz2 produces ∆H12 for the energy defined over Voronoi
region of z1, and produces ∆H21 for the energy over Voronoi region of z2. Similarly, pz3 leads
to ∆H13 for z1, and ∆H31 for z3. The four energy differences are defined below:

∆H12 =

∫ z1

z1+z2
2

‖y − z1‖2
(

1 + ∆p · z1 − z2

‖z1 − z2‖

)
dy
‖y − z2‖
‖z1 − z2‖

(∆p · n12)

where n12 is the unit normal vector orthogonal to z1z2. The integrand means that for each
small line segment on the edge z2z1, it expands to a small rectangle when there is a ∆p. The
value ‖y − z1‖2 is assumed not to vary on such a small patch. And the area of the rectangle is(

1 + ∆p · z1−z2
‖z1−z2‖

)
dy ‖y−z2‖‖z1−z2‖ (∆p · n12). The first part is length of the segment after expansion.

The second part is the orthogonal edge length. For ∆H12 the interval would be from z1+z2
2 to

z1. Similarly, the other three energy differences are:

∆H13 =

∫ z1

z1+z3
2

‖y − z1‖2
(

1 + ∆p · z1 − z3

‖z1 − z3‖

)
dy
‖y − z3‖
‖z1 − z3‖

(∆p · n13)

∆H21 =

∫ z1+z2
2

z2

‖y − z2‖2
(

1 + ∆p · z1 − z2

‖z1 − z2‖

)
dy
‖y − z2‖
‖z1 − z2‖

(∆p · n12)

∆H31 =

∫ z1+z3
2

z3

‖y − z3‖2
(

1 + ∆p · z1 − z3

‖z1 − z3‖

)
dy
‖y − z3‖
‖z1 − z3‖

(∆p · n13)
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Then we find that

lim
‖∆p‖→0

∆H12 + ∆H13 + ∆H21 + ∆H31

∆p
=

1

24

(
‖z1 − z2‖3n12 + ‖z1 − z3‖3n13

)
So the gradient of CVT is

dH

dz1
= 2m1(z1 − c1) +

1

24

(
‖z1 − z2‖3n12 + ‖z1 − z3‖3n13

)
.

By summing up the gradients on the 1-ring neighborhood facets of a vertex, and putting back
the coefficient N , we get the gradient equation of a vertex at Eq. 10.
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