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Edge Enhanced Implicit Orientation Learning with
Geometric Prior for 6D Pose Estimation

Yilin Wen1, Hao Pan2, Lei Yang1 and Wenping Wang1

Abstract—Estimating 6D poses of rigid objects from RGB
images is an important but challenging task. This is especially
true for textureless objects with strong symmetry, since they have
only sparse visual features to be leveraged for the task and their
symmetry leads to pose ambiguity. The implicit encoding of ori-
entations learned by autoencoders [31], [32] has demonstrated its
effectiveness in handling such objects without requiring explicit
pose labeling. In this paper, we further improve this methodology
with two key technical contributions. First, we use edge cues to
complement the color images with more discriminative features
and reduce the domain gap between the real images for testing
and the synthetic ones for training. Second, we enhance the
regularity of the implicitly learned pose representations by a
self-supervision scheme to enforce the geometric prior that the
latent representations of two images presenting nearby rotations
should be close too. Our approach achieves the state-of-the-art
performance on the T-LESS benchmark in the RGB domain;
its evaluation on the LINEMOD dataset also outperforms other
synthetically trained approaches. Extensive ablation tests demon-
strate the improvements enabled by our technical designs. Our
code is publicly available for research use∗.

Index Terms—Deep Learning for Visual Perception, Represen-
tation Learning

I. INTRODUCTION

DETECTING rigid objects and estimating their 6D poses
from images is fundamental in robotics and computer

vision and critical for applications like robotic grasping and
augmented reality. While object detection has seen great ad-
vancements due to the emergence of deep neural networks that
recognize and locate objects robustly from diverse surround-
ings, the object pose estimation problem remains challenging
due to the complexity introduced by rotational symmetries of
the objects. It is further complicated by the lack of visual
salient textures to distinguish different rotations, as can be
seen in many common objects, e.g. water bottles in daily life
[14] or bolts and nuts at manufacturing sites [15].

To handle the textureless inputs with rotational ambiguities,
a common approach taken by previous works is to pre-
define the symmetries manually and solve a perspective-n-
point (PnP) problem [21] for detected 2D/3D keypoint pairs
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while modulating the symmetry-induced ambiguities [26]–
[28], [33].

A drastically different approach proposed by [31] learns a
latent space to encode rotations by an autoencoder such that
the symmetric poses are implicitly aligned in the encoding
space, thus avoiding the prohibitive manual labeling of object
symmetries. However, learning a regular and robust encoding
space requires a large amount of training data to cover
diverse real environments, which is impractical to capture. To
solve this problem, [31] instead synthesizes training images
by rendering the objects in diverse augmented environments
to reduce the gap between the rendered images and those
captured from real scenarios, thus naming their approach the
augmented autoencoder (AAE).

While AAE shows impressive robustness against textureless
and symmetric objects, we propose two key designs to further
reduce the domain gap between real and synthetic data and
improve the implicit orientation learning, thereby establishing
new state-of-the-art performances. First, we observe that the
augmented synthetic training images exhibit significant do-
main gap from real test images, due to the diverse conditions
of real lighting, material, occlusion, etc. that are hard to
simulate by synthetic images. On the other hand, sharp features
(i.e. edges) of the images of textureless objects are generally
invariant across different conditions, thus providing a robust
cue for pose estimation. Therefore, by combining the edge
cues with the color images we achieve enhanced discriminative
learning of different poses (Sec. V-C). Second, the latent space
learned by AAE that encodes orientations generally lacks
regularity, in the sense that changes of the pose are not mapped
to corresponding changes in latent code (Fig.3), which is a
common problem with autoencoders [1]. To address this issue,
we propose a geometric prior for the self-supervised learning
of latent codes to impose a regularity constraint: we sample
a sparse set of reference rotations, and enforce that for any
rotation of the object its latent code should be close to the
code of its nearest reference rotation. The geometric prior
applied leads to further performance improvements as shown
in Sec. V-C.

Our network is trained solely on synthetic data, and com-
bined with 2D detection backbones for evaluation on the real
benchmarks of T-LESS [15] and LINEMOD [14] containing
textureless objects with various symmetries.

To summarize, our main contributions are:
• We combine the color cue with the edge cue to reduce

the domain gap between real images for inference and
synthetic ones for training.

• We introduce a self-supervision scheme with the geomet-
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Fig. 1. The pose estimation process at test time. Given a query RGB image and the object of interest as input, the object in the image is detected by a 2D
detector. The detected object region is cropped and resized to feed to the trained encoder. Using the offline generated codebook consisting of encodings of
the representative rotations, we estimate the rotation of the query instance via nearest code retrieval, and infer the translation based on the bounding box scale
ratio between the retrieved pose template and the detected 2D bounding box.

ric prior imposed on the implicit orientation learning that
maps input images into latent representations.

• As a result of the two technical contributions, by training
on synthetic data only, our method achieves the state-
of-the-art performance for 6D pose estimation on T-
LESS [15] in the RGB domain, and outperforms other
synthetically trained approaches on LINEMOD [14].

II. RELATED WORK

In this section, we briefly review the most related works on
6D pose estimation and self-supervised learning methods that
share similarities with our geometric prior regularization.

A. 6D Pose Estimation Based on RGB Images
6D pose estimation is an active research area with a large

body of literature [16]. As our network solely consumes
RGB data, making it essentially different from the RGBD
approaches that fuse RGB and depth data via networks for
pose estimation (e.g. PointFusion [40] and DenseFusion [37]),
we briefly review the RGB-based methods from the aspect
of the general paradigm taken, and focus on the works most
relevant to our approach.
Keypoints matching. This approach detects for a sparse set
of 3D keypoints their corresponding 2D image points, and
use the perspective-n-point(PnP) algorithm [21] to estimate
the rigid transformation from these 2D-3D correspondences.
While [28] and [33] use bounding box corners as keypoints, a
recent work [27] explores using designated surface keypoints
for more robust 2D keypoint localization.
Dense matching. Methods in this category regress the 3D
object points for each 2D image pixel within the object
mask, and then estimate the object pose with the dense 2D-
3D correspondences using e.g. PnP with RANSAC [8] to
obtain robustness against noisy correspondences. For example,
[3] uses an auto-context network to regress the pixel-wise
distribution of 3D coordinates. Pix2Pose [26] is a very recent
work that trains an autoencoder and outputs the dense object
coordinates with a GAN loss to hallucinate the occluded parts,
as well as a predicted confidence map to filter unreliable
correspondences.
Direct pose regression. PoseCNN [39] uses a CNN to directly
regress the rotations represented as quaternions as well as
depths for translation. Similarly, SilhoNet [2] regresses the

rotation quaternion by first predicting a silhouette representa-
tion that is invariant across synthetic and real images, which
shares similarities with our edge cue. However, [42] shows that
the quaternion representation of rotations has a non-Euclidean
topology and is challenging to learn directly. SSD-6D [18]
instead represents rotation as the combination of sampled
viewpoints on the bounding sphere and in-plane rotation, and
directly regresses orientation by classification into the samples.

We note that for all these different approaches, the prior
labeling of symmetry is required for training against pose
ambiguity, which can be tedious and impractical for objects
with complex symmetries.
Template matching. These methods discretize the rotation
space into sampled templates, and retrieve the closest template
for a given object image, thus bypassing the explicit labeling
of pose ambiguity. E.g., [41] extracts edgelets from the object
image, utilizes the directional chamfer distance [17] to retrieve
pose templates, and conducts further refinement. But the
handcrafted feature computation is time-consuming.

AAE [31] uses an autoencoder trained with synthetically
augmented data to map the images to a latent space, where
pose ambiguity is implicitly handled through similar latent
codes for symmetric poses. However, limitations still exist
such as the domain gap between real and synthetic data and
regularity of the latent embedding space (Sec. I).

Our approach inherits the merit of the implicit rotation rep-
resentation learned by an autoencoder and avoids the labeling
of pose ambiguity. Meanwhile, we introduce edge cues to
narrow down the domain gap between real and synthetic data,
and a self-supervision scheme of geometric prior to regularize
the implicit rotation representation.

B. Unsupervised/Self-supervised Representation Learning
Autoencoders [10, Chapter 14] are standard for unsuper-

vised representation learning, which suits the need for ori-
entation representation without labeling pose ambiguity for
our 6D pose estimation. The naive autoencoders are known
to lack regularity for the latent encoding [1], and numerous
improvements have been made to address this problem in
general. For example, the denoising autoencoder [36] forces
the recovery of clean data from noisy input to better capture
the inherent low-dimensional structure of the training data.
Variational autoencoder [20] encourages the latent embed-
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ding space to follow a regular Gaussian distribution. Vector-
quantized autoencoders [29], [35] quantize the latent code
against a codebook to enhance the regularity of the learned
embedding space while avoiding space degeneracy associated
with variational autoencoders. Different from these general
enhancements, our geometric prior is a regularization of the
latent encoding that is tailored for the rotation representation,
and utilizes the contrastive loss to enforce its geometric
structure.

Contrastive losses have shown great promise for self-
supervised representation learning [5], [11], [34], [38]. Our
geometric prior uses the contrastive loss to relate the input
rotations to nearby reference poses, which is shown to be an
effective self-supervision for rotation representation learning.

III. METHOD
A. The Autoencoder Framework

As shown in Fig. 2, the autoencoder framework [31],
[32] has a pair of encoder and decoder convolutional neural
networks, denoted as E and D respectively. The encoder
E takes as input an RGB image Ix ∈ RW×H×3 at pose x,
and maps it to a low dimensional code E (Ix) ∈ Rd in the
latent space (d�W×H×3). The decoder recovers an image
D(E (Ix)) ∈ RW×H×3 via an inverse mapping. By minimizing
the reconstruction loss

∑
x∈R
||D(E (Ix))− Ix||2 (1)

with respect to the parameters of E ,D on the corresponding
images of a set of rotations R, we expect the latent code
E (Ix) to capture the pose information that solely distinguishes
x from the other poses in R. One can immediately see that
for symmetric rotations x and x′, since their corresponding
images are similar Ix ≈ Ix′ , so are their latent codes E (Ix) ≈
E (Ix′). This automatically handles the pose ambiguity problem
without manual labeling (c.f. [31, Fig. 3-(3)] and Fig. 3-(c)).

To apply the trained networks to pose estimation, as shown
in Fig. 1, a dense set of template poses R are sampled and a
corresponding codebook C = {E (Ix)|x∈R} is built. Given an
input real image I bounding the detected object, we then search
for x∗ = argminx∈R d(E (I),E (Ix)) as the closest matching
pose, where d(·, ·) is the angle between two code vectors.
With the retrieved rotation, one can estimate the translation by
comparing the relative scaling of the image and the template
[18], [31], [32], or by sampling the depth image, if available,
at the corresponding region.

Several problems arise in the process that affects its effec-
tiveness. First, a large set of training images {Ix|x ∈R} are
needed to train the autoencoder. While the training images
can be synthesized by rendering the object model in arbitrary
poses, they may be visually different from the real input
images, since conditions such as lighting and occlusion are
hard to simulate. AAE [31], [32] tries to resolve this issue
by augmenting the training images, e.g. by changing the
lighting conditions, random scaling and cropping, overlaying
to a random background, etc. Denoting the random augmen-
tation operator as G(·), the reconstruction loss function in (1)
becomes

∑
x∈R
||D(E (G(Ix)))− Ix||2. (2)

In Sec. III-B, we propose to reduce this domain gap by using
edge cues which are well known to be discriminative features
and consistent across the synthesized and real images.

Second, the latent space learned by a regular autoencoder is
known to lack regularity even with a large amount of training
data [1]. However, we expect the latent space to be regular
and represent rotations with a strong geometric structure.
We enforce this structure through a self-supervised learning
scheme detailed in Sec. III-C.

B. Combining Color and Edge Maps
We use the Canny operator [4] C(·) to compute the binary

edge map of an image, but other edge detectors may well
be applied. As shown in Fig. 2, given an input image I,
we compute its edge map C(I) ∈ RW×H×1, concatenate the
two images as I = [I;C(I)], and feed I to our encoder.
Meanwhile, our decoder has two branches, with Dc recovering
the color image and De the edge map. We adopt a single
encoder architecture instead of using two separate encoders for
encoding color and edge images, respectively. In this way, we
can achieve efficient computation at test time and circumvent
the additional design of a combination scheme to fuse the
outputs from two encoders. As a result, the autoencoder loss
function for color image reconstruction becomes

Lcolor = ∑
x∈R
||Dc(E (G(Ix)))− Ix||2. (3)

The loss function for the edge map reconstruction is

Ledge = ∑
x∈R

BCE
(
De(E (G(Ix))),C(Ix)

)
, (4)

where BCE(·) computes a weighted binary cross-entropy be-
tween the reconstructed edge map and the input one. Denoting
De(E (G(Ix)) as Ex, we define

BCE(Ex,C(Ix)) =−β ∑
C(Ix)(i, j)=1

logEx(i, j)

− (1−β ) ∑
C(Ix)(i, j)=0

log(1−Ex(i, j)),
(5)

where C(Ix)(i, j) = 1 when the pixel (i, j) is an edge pixel,
and β is the fraction of the number of non-edge pixels over
the total number of pixels in C(Ix).

The total reconstruction loss for training the autoencoder
therefore is

Lrecon = Lcolor +Ledge. (6)

By providing the autoencoder with the edge map as input and
forcing it to recover the edge map, we expect the latent pose
encoding to be more aware of the discriminative edge cues that
are robust across synthesized and real images, thus minimizing
the domain gap.

C. Regularization via Geometric Prior
The geometric prior aims to impose the structure of the

rotation space SO(3) on the latent encoding space by requiring
images presenting nearby rotations to be mapped to nearby
latent codes, while repelling the codes for images presenting
rotations that are far away.

To implement the geometric prior during network training,
we evenly sample a set of reference rotations Rc = {xq ∈
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Fig. 2. Overview of the training process. Given a pair of the augmented color image and its edge map, the encoder maps the concatenated image pair to a
code in the latent space. The code is compared against a set of reference codes to impose the geometry prior of the rotation space (Sec. III-C). Meanwhile,
the code is passed through the color and edge decoders to reconstruct the canonical color image (lower branch) and edge map (upper branch), respectively
(Sec. III-B). The reconstruction loss and the geometric prior loss together help the autoencoder to learn an implicit orientation encoding that is more aware
of the discriminative edge cues and closer to the rotation space geometry.

SO(3)|q = 1,2, · · · ,k} to serve as anchors spanning the ro-
tation space. Meanwhile, we maintain a corresponding latent
codebook C = {cq ∈Rd |q = 1,2, · · · ,k}, where cq is the latent
code for the reference rotation xq.

For any given rotation x and its latent code zx = E (G(Ix)),
we expect zx to approximate cq if x and xq are close, or be
different from cq if x and xq are far away, thus fulfilling
the geometric prior. To this end, we use a contrastive loss
to achieve the geometric prior. In particular, we define a
probability distribution for zx to measure its proximity to cq
as

p(cq|zx) =
exp(ċq

T żx/t)
∑ j exp(ċ j

T żx/t)
, (7)

where t controls the sharpness of proximity (usually called
temperature in a contrastive loss), and ȧ= a/||a||2 denotes vec-
tor normalization. Meanwhile, we define a target probability
distribution over the reference rotations as wx = [wx

1, · · · ,wx
k]∈

Rk, where wx
q∗ = 1 for the closest rotation q∗= argmin∠(xq,x),

and wx
q = 0 otherwise. The target distribution represents the

closeness between x and the reference rotations. Finally, the
contrastive loss is defined as the cross-entropy between the
two distributions:

Lprior =− ∑
x∈R

∑
q

wx
q log p(cq|zx). (8)

While the network parameters are trained by a stochastic
gradient descent (SGD) solver, the reference codebook C is
updated by exponential moving average to stabilize training.
Specifically, for each cq, there are two accumulated variables
nq≥ 0 and mq ∈Rd ; they are initialized as 0 and a random unit
vector, respectively, and later updated in each SGD iteration
following the rules:

nq := γnq +(1− γ)∑
x

wx
q,

mq := γmq +(1− γ)∑
x

wx
qzx, (9)

cq := mq/nq,

where x iterates over the training samples in a mini-batch.
Here γ = 0.99 is the exponential decay weight.

To summarize, the final loss for training our autoencoder
combines the geometric prior and reconstruction losses:

L = Lrecon +λLprior, (10)

where λ is a hyper-parameter weighing the two terms.

IV. IMPLEMENTATION

A. Data Generation
To prepare training data, we randomly sample 20,000 ro-

tations as R for an object. The reference codebook C has
k = 8020 rotations formed by combining 20 in-plane rotations
with 401 quasi-equidistant views sampled from the Fibonacci
lattice on a unit sphere [9]. For pose query at the test stage, we
prepare a larger codebook C with k = 92232 evenly sampled
rotations. They are formed by 2562 equidistant spherical views
based on refining the icosahedron [13] and further multiplied
by 36 in-plane rotations for each view.

With the sampled rotations, for generating the non-
augmented Ix used as the training ground-truth or in computing
the codebook C , we center and rotate the object and render it
under a fixed lighting with a black background. For generating
the input training images, the image augmentation operator
G(·) follows [31] and consists of 1) randomizing lighting
conditions, 2) applying random 2D translation and scaling
to the rendered mesh model, 3) combining rendered images
with random background images from [7], 4) varying the
color values, and 5) adding partial occlusion. In addition, the
edge map operator with Canny C(·) uses a fixed threshold
parameters t1 = 50, t2 = 150, but we randomize (t1, t2) with
t1 ∼ U(30,100), t2 = rt1, and r ∼ U(1.2,2) to augment edge
maps extracted from the augmented training color images,
where U(a,b) is the uniform distribution in range [a,b].

B. Network Details
Fig. 2 illustrates the structure of the convolutional neural

networks. We empirically set the dimension of the latent space
d = 128, λ = 0.004 and t = 0.07 for the network training, and
also introduce a bootstrap factor of 4 for Lcolor [31]. The Adam
optimizer [19] is adopted to train the autoencoder with a fixed
learning rate of 0.0002. The batch size is set to 64 and the
maximum number of iterations is 30k. During testing, given
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the 2D bounding box of an object detected by a backbone
detector, the input image is cropped and resized to 128×128
and fed to the encoder. We use different detectors in various
experiments for a fair comparison, as detailed in Sec. V.

V. EXPERIMENTS

A. Dataset

We evaluate our approach and compare with previous
methods on two most widely used datasets, T-LESS and
LINEMOD, for 6D pose estimation. The T-LESS dataset [15]
contains 30 CAD objects. These objects are highly symmetric
and have similar shapes, but have very limited texture informa-
tion. Moreover, most test images have significant occlusions
and/or clutters, which presents further difficulty. Therefore, the
dataset is a challenging test for 6D pose estimation. For all the
experiments presented, we use the textureless CAD meshes
provided by the dataset to prepare the synthetic training
images, and leave the real images only for testing.

The LINEMOD dataset [14] contains 15 objects that are
more common in daily scenarios. These objects also lack
detailed and discriminative textures. For each object, we use
its reconstructed mesh provided by the dataset to prepare the
synthetic images for network training, and use the real images
for testing only.

Compared with T-LESS, most objects in LINEMOD are
free from pose ambiguity. Moreover, due to the quality of the
3D models, the inaccurate intrinsics, and sensor registration
errors between the RGB and depth images of LINEMOD
noted in [25], the pinhole camera model is deeply affected
and thus cannot provide an accurate depth estimation, as
noticed in [18], [31], [32]. In comparison, networks trained
with real data can take advantage of the strong correlation
between the real training and testing sets. Taking together these
factors, we consider the T-LESS dataset to be more indicative
for evaluating our method, as we focus on handling rotation
estimation for textureless objects with strong symmetry. In
addition, to eliminate the large biases caused by inaccurate
depth estimation on LINEMOD and better evaluate our rota-
tion estimation, we refer to the depth image for post-process
refinement, using either mean depth or point-to-plane ICP [6].
During the refinement, as commonly done in registration,
we eliminate the outlier pixels from consideration. To find
the outlier pixels in the depth images, we first measure the
maximum distance ε between pixel depths and the average
depth for the synthetic depth map rendered under the estimated
pose, and consider a pixel of real depth map as an outlier if
its depth from the average exceeds 2ε .

B. Evaluation Metrics
Visible Surface Discrepancy [16], denoted as eV SD, computes
the difference of the visible depth values between models
transformed by the estimated 6D pose and by the ground-truth
pose:

eV SD = avg
p∈Vest∪Vgt

{
0, p ∈Vest ∩Vgt ∧|Vest(p)−Vgt(p)|< τ

1, otherwise
(11)

where Vest ,Vgt are the visible depth maps for the estimated
and ground-truth poses, respectively. Therefore eV SD is not
sensitive to pose ambiguity because of object symmetry or
partial occlusion. We adopt the criterion proposed in [16] that
an estimated pose is correct when its eV SD < 0.3 with threshold
τ = 20mm. We follow [26] and use the reconstructed meshes
for error computation.

(a) Projected latent codes for three local orientation changing trajectories
by rotating an arbitrary pose around three axes.

(b) Projected latent codes for two local orientation changing trajectories by
rotating two opposite poses with similar appearances around the same axis.

(c) Projected latent codes for two local orientation changing trajectories by
rotating two different but symmetric poses around the symmetry axis.

Fig. 3. Plotting the top three principal component projections (pc1, pc2, pc3)
of latent codes for different orientation transition trajectories. PCA bases are
computed from the codes of reference poses Rc. The trajectories are obtained
by rotating around given axes for 20 degrees with step size 0.5◦. Views 1 and
2 are two different views of a same plot in each sub-figure respectively, to
better visualize the 3D embedding. (a) and (b) show that with geometric prior,
similar orientations are better distinguished by their latent codes than without
the geometric prior. (c) shows that for highly symmetric poses, the geometric
prior does not prevent the latent codes from getting nearly identical.

Average Distance [14], eAD{D|I}, computes the mean mesh
vertex distances as the model M is transformed by the ground-
truth pose (Rgt ,Tgt ) and by the estimated pose (Rest ,Test ),
respectively:

eADD = avg
v∈M
||(Rgtv+Tgt)− (Restv+Test)||. (12)

For symmetric objects, the distance to the nearest vertex is
calculated instead:

eADI = avg
v∈M

min
v′∈M
||(Rgtv+Tgt)− (Restv′+Test)||. (13)
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Following [14], an estimated pose is considered correct if the
error eAD{D|I} is less than 0.1dM , where dM is the diameter of
the given model.

C. Ablation Tests

We evaluate the effectiveness of the different components
proposed in our method. We compare the four alternatives: 1)
the original autoencoder approach proposed by AAE, 2) the
edge enhanced autoencoder, 3) the original autoencoder with
geometric prior, where λ is halved to 0.002 due to the missing
edge term (Eq. 6), and 4) the edge enhanced autoencoder with
geometric prior. We test for all 30 objects on all Primesense
test images provided by the TLESS dataset. To control the
inaccuracies introduced by the backbone detection network,
we use the ground-truth bounding boxes of each object instead,
and report on all instances whose visible portions are larger
than 10%.

Tab. I reports the average recall rate with respect to eV SD
for all instances in the testing set. Compared with the baseline
network using only color images as input and reconstruction
target, the introduction of either edge cue for domain gap
reduction or geometric prior to latent encoding regularization
improves the recall rate by a large margin. On top of that, the
combination of them brings the most benefits.

TABLE I
ABLATION STUDY ON DIFFERENT COMPONENTS. AVERAGE RECALL RATE

OF eV SD < 0.3 FOR ALL INSTANCES OF TLESS OBJECTS WITH VISIBLE
PORTION OVER 10% IS REPORTED. OUR TWO NOVEL COMPONENTS BRING

SIGNIFICANT IMPROVEMENTS.
Color cue Edge cue Geometric prior Ave.

X × × 64.19
X X × 67.59
X × X 68.13
X X X 70.77

Fig. 3 further visualizes the benefits of introducing geo-
metric prior to the edge enhanced autoencoder, where we use
principal component analysis (PCA) to project the latent space
into R3 with the top three principal components. Specifically,
we use the code set {E (Ix)|x∈Rc} for the reference rotations
Rc to compute the PCA bases, and inspect the latent code
transitions for three representative cases:

(a) Three different orientation changing transition trajectories
around an arbitrary view.

(b) Two local transition trajectories around two opposing
orientations that have similar views.

(c) Two local transition trajectories around two different ori-
entations that have nearly perfect symmetry.

As shown in Fig. 3, in the first two cases, without geometric
prior, the trajectories have codes that are mixed up. In contrast,
with geometric prior, the trajectories are well distinguishable.
In the last case, even with geometric prior the codes of two
trajectories are very close due to the very negligible differences
of the two views, although they are still slightly distinguish-
able. The three cases indicate that the geometric prior induces
regularity of the latent orientation encoding space, in the sense
that subtle pose differences are well distinguished while strong
symmetries are preserved.

D. Comparison
In this part we compare our method with the state-of-the-art

methods on both T-LESS and LINEMOD datasets. Unlike in
Sec. V-C where all instances for an object are considered, here
we follow the single instance for one object protocol specified
in the SIXD challenge [16] to compare fairly with existing
works, and use the detected 2D bounding boxes instead of
the ground truth ones. Some qualitative results are shown in
Fig. 4. Our pipeline was also applied in a grasping task, with
setting and a sample result shown in Fig. 4; the demo video
is provided in the supplemental material.

TABLE II
COMPARISON WITH STATE-OF-THE-ART METHODS OF THE FULL

DETECTION+POSE ESTIMATION PIPELINE. REPORTED ARE THE RECALL
RATES OF eV SD < 0.3 WITH τ = 20mm USING ALL PRIMESENSE TEST

IMAGES IN THE T-LESS DATASET [15].

obj id AAE Zhang Pix2Pose Ours Ours
[31], [32] [41] [26] +RetinaNet +GT 2D

01 12.67 7.32 38.4 37.01 65.22
02 16.01 12.31 35.3 29.78 73.44
03 22.84 14.55 40.9 44.42 87.34
04 6.70 5.94 26.3 26.71 65.50
05 38.93 38.43 55.2 56.22 72.07
06 28.26 18.35 31.5 47.49 65.73
07 26.56 19.44 1.1 26.88 53.19
08 18.01 21.34 13.1 22.98 56.49
09 33.36 39.46 33.9 33.84 74.87
10 33.15 9.54 45.8 35.79 78.80
11 17.94 10.34 30.7 23.27 73.17
12 18.38 9.59 30.4 26.25 76.46
13 16.20 6.83 31.0 27.70 64.31
14 10.58 5.63 19.5 16.76 69.81
15 40.50 35.59 56.1 35.81 75.03
16 35.67 29.32 66.5 59.31 74.83
17 50.47 58.82 37.9 55.20 89.34
18 33.63 50.15 45.3 60.11 85.77
19 23.03 27.45 21.7 7.49 73.62
20 5.35 4.39 1.9 9.83 57.31
21 19.82 14.35 19.4 13.77 78.94
22 20.25 20.57 9.5 12.4 77.11
23 19.15 15.98 30.7 24.19 70.79
24 27.94 8.34 18.3 37.37 77.73
25 51.01 23.30 9.5 33.98 73.43
26 33.00 10.23 13.9 42.54 76.54
27 33.61 18.94 24.4 28.14 66.70
28 30.88 19.45 43.0 56.06 81.36
29 35.57 35.54 25.8 49.30 73.35
30 44.33 37.45 28.8 59.43 92.21

Mean 26.79 20.96 29.5 34.67 73.35

T-LESS. Following the previous Pix2Pose [26], we use a fine-
tuned RetinaNet [23] as the backbone object detector which
was pretrained on the MS-COCO dataset [24]. Tab. II presents
the recall rate with respect to eV SD and compares our method
to other approaches with corresponding detectors: AAE [31]
and Pix2Pose [26] with RetinaNet [23], and Zhang et al. [41]
with YOLO [30]. Objects with visible portion over 10% on
all Primesense scenes are considered. Note that the results of
AAE are derived from the latest version [32]. The results show
that our method not only brings significant improvements to
AAE [31] (by 7% in recall rate) and [41] which uses edge
cues in a hand-crafted manner, but also outperforms the state-
of-the-art Pix2Pose by more than 5%.

In addition, we argue that should a more accurate 2D
detection be provided, the recall rate can be further improved.
This is demonstrated by the results produced with ground-truth
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TABLE III
COMPARISON WITH STATE-OF-THE-ART METHODS OF THE FULL DETECTION+POSE ESTIMATION PIPELINE. REPORTED ARE THE RECALL RATES OF

eAD{D|I} WITH REGARD TO 10% OF OBJECT DIAMETER ON LINEMOD DATASET [14]. OBJECTS WITH SYMMETRY ARE IN BOLD NAME.
Synthetic RGB + Depth Refinement Real RGB Real RGBD

AAE [31]
[32]+ICP

SSD-6D
[18]+ICP

Ours
+Mean Depth

(+MaskR-CNN)

Ours
+ICP

(+MaskR-CNN)

Brachmann
[3] w/ Ref.

BB8 [28]
w/ Ref.

Tekin
[33]

Pix2Pose
[26]

PoseCNN [39]
+DeepIM [22]

PointFusion
[40]

DenseFusion
[37] w/ Ref.

Ape 24.35 65 72.90 87.38 33.2 40.4 21.62 58.1 77.0 70.4 92.3
B.Vise 89.13 80 92.83 96.13 64.8 91.8 81.80 91.0 97.5 80.7 93.2
Cam 82.10 78 69.28 91.01 38.4 55.7 36.57 60.9 93.5 60.8 94.4
Can 70.82 86 85.28 89.46 62.9 64.1 68.80 84.4 96.5 61.1 93.1
Cat 72.18 70 91.52 96.61 42.7 62.6 41.82 65.0 82.1 79.1 96.5

Driller 44.87 73 70.29 77.95 61.9 74.4 63.51 76.3 95.0 47.3 87.0
Duck 54.63 66 52.95 69.38 30.2 44.3 27.23 43.8 77.7 63.0 92.3
E.box 96.62 100 100.00 100.00 49.9 57.8 69.58 96.8 97.1 99.9 99.8
Glue 94.18 100 99.02 99.02 31.2 41.2 80.02 79.4 99.4 99.3 100.0

HoleP. 51.25 49 55.86 66.45 52.8 67.2 42.63 74.8 52.8 71.8 92.1
Iron 77.86 78 96.09 98.78 80.0 84.7 74.97 83.4 98.3 83.2 97.0

Lamp 86.31 73 91.44 94.38 67.0 76.5 71.11 82.0 97.5 62.3 95.3
Phone 86.24 79 83.51 93.48 38.1 54.0 47.74 45.0 87.7 78.8 92.8
Mean 71.58 79 81.61 89.23 50.2 62.7 55.95 72.4 88.6 73.7 94.3

bounding boxes in Tab. II, where we only process the instance
of the highest visible portion for each object in each image.
This serves as idealized upper-bounds on the performances of
our approach under the single object single instance protocol,
although significant occlusions still exist.
LINEMOD. Following Pix2Pose, we use a fine-tuned Mask
R-CNN [12] as the detector. We report the recall rate with
respect to eAD{D|I} on 13 of 15 objects in Tab. III, where
comparing methods are divided into three domains by consid-
ering whether real data are used to train the pose estimation
network and how depth data are used. We mainly focus on
the comparison with SSD-6D [18] and AAE [31], [32], which
are similar to ours by training the rotation estimation network
solely on synthetic images and estimating the translation by
the pinhole model. Both AAE and SSD-6D use depth images
for full 6D pose refinement by ICP at the inference stage.

First, we coarsely refine the translation of our results by
calculating the mean depth, i.e. “Ours+Mean Depth”. Under
this setting our results are already comparable to SSD-6D,
although SSD-6D samples only a limited range of poses
from SO(3) which eases rotation estimation, and refines both
rotation and translation by ICP. Meanwhile, our method out-
performs the baseline AAE and even an RGBD-based method
trained on real data, i.e. PointFusion [40], by over 10% and
nearly 8%, respectively. Compared with most of the RGB-
based methods which are trained on the real data, our method
can also achieve a comparable recall rate with the translation
refinement by mean depth only. We further conduct point-to-
plane ICP to refine the full 6D pose of our results, shown as
“Ours+ICP”. This achieves a recall rate that exceeds SSD-6D
by a significant margin and is comparable to PoseCNN [39]
refined by DeepIM [22].

E. Runtime

The inference time of our method is measured with T-LESS
images of size 720×540 as input, on a machine with i7-6700K
4GHz CPU and Nvidia GTX 1080 GPU.

While the RetinaNet [23] takes around 105ms to detect
objects, our pose estimation for a single instance takes about
11ms. In comparison, Pix2Pose [26] uses 25-45ms for a single
instance, more than twice of ours.

Fig. 4. Visualization of estimated poses of several testing images from T-
LESS and LINEMOD (Row 1&2), and a grasping task (Row 3). The grasping
setting is shown on the left. The green boxes and blue boxes are ground truth
poses and our estimation, respectively. Our network works robustly in these
diverse environments.

VI. CONCLUSION

In this paper, we have introduced a new method to perform
6D pose estimation from RGB images, which handles tex-
tureless objects with strong symmetry. Based on the implicit
orientation encoding framework, we propose two key designs
for improvement. Specifically, we show that combining the
color images and edge maps can help bridge the domain gap
between the synthetic training images and the real testing data.
In addition, the geometric prior designed to impose the rotation
space geometry onto the latent space enhances the regularity
of the learned orientation encoding, thus further improving
the performance. Extensive evaluations on the challenging T-
LESS and LINEMOD datasets demonstrate the effectiveness
of our method.

Limitations and future work. While our approach works
well with symmetry and pose ambiguity, it does not explicitly
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address the issues caused by occlusion or cluttered back-
grounds. In the future, we would like to take these factors into
consideration and make our approach more robust for complex
6D pose estimation scenarios.
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